Algebraic intersection for translation surfaces in the stratum \(\mathcal{H}(2)\)

We study the quantity \(\mbox{KVol}\) defined as the supremum, over all pairs of closed curves, of their algebraic intersection, divided by the product of their lengths, times the area of the surface. The surfaces we consider live in the stratum \(\mathcal{H}(2)\) of translation surfaces of genus \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-07
Hauptverfasser: Cheboui, Smaïl, Kessi, Arezki, Massart, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the quantity \(\mbox{KVol}\) defined as the supremum, over all pairs of closed curves, of their algebraic intersection, divided by the product of their lengths, times the area of the surface. The surfaces we consider live in the stratum \(\mathcal{H}(2)\) of translation surfaces of genus \(2\), with one conical point. We provide an explicit sequence \(L(n,n)\) of surfaces such that \(\mbox{KVol}(L(n,n)) \longrightarrow 2\) when \(n\) goes to infinity, \(2\) being the conjectured infimum for \(\mbox{KVol}\) over \(\mathcal{H}(2)\).
ISSN:2331-8422
DOI:10.48550/arxiv.2007.11995