An Index Theory with Applications to Homoclinic Orbits of Hamiltonian Systems and Dirac Equations
In this paper, we will define the index pair ( i A ( B ) , ν A ( B ) ) by the dual variational method, and show the relationship between the indices defined by different methods. As applications, we apply the index ( i A ( B ) , ν A ( B ) ) to study the existence and multiplicity of homoclinic orbit...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2020-09, Vol.32 (3), p.1177-1201 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we will define the index pair
(
i
A
(
B
)
,
ν
A
(
B
)
)
by the dual variational method, and show the relationship between the indices defined by different methods. As applications, we apply the index
(
i
A
(
B
)
,
ν
A
(
B
)
)
to study the existence and multiplicity of homoclinic orbits of nonlinear Hamiltonian systems and solutions of nonlinear Dirac equations. |
---|---|
ISSN: | 1040-7294 1572-9222 |
DOI: | 10.1007/s10884-020-09846-3 |