PUT-Hand—Hybrid Industrial and Biomimetic Gripper for Elastic Object Manipulation
In this article, the design of a five-fingered anthropomorphic gripper is presented specifically designed for the manipulation of elastic objects. The manipulator features a hybrid design, being equipped with three fully actuated fingers for precise manipulation, and two underactuated, tendon-driven...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-07, Vol.9 (7), p.1147 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, the design of a five-fingered anthropomorphic gripper is presented specifically designed for the manipulation of elastic objects. The manipulator features a hybrid design, being equipped with three fully actuated fingers for precise manipulation, and two underactuated, tendon-driven digits for secure power grasping. For ease of reproducibility, the design uses as many off-the-shelf and 3D-printed components as possible. The on-board controller circuit and firmware are also presented. The design includes resistive position and angle sensors in each joint, resulting in full joint observability. The controller has a position-based controller integrated, along with USB communication protocol, enabling gripper state reporting and direct motor control from a PC. A high-level driver operating as a Robot Operating System node is also provided. All drives and circuitry of the PUT-Hand are integrated within the hand itself. The sensory system of the hand includes tri-axial optical force sensors placed on fully actuated fingers’ fingertips for reaction force measurement. A set of experiments is provided to present the motion and perception capabilities of the gripper. All design files and source codes are available online under CC BY-NC 4.0 and MIT licenses. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics9071147 |