Numerical Scheme for Stochastic Differential Equations Driven by Fractional Brownian Motion with 1/4<H<1/2
In this article, we study a numerical scheme for stochastic differential equations driven by fractional Brownian motion with Hurst parameter H ∈ 1 / 4 , 1 / 2 . Toward this end, we apply Doss–Sussmann representation of the solution and an approximation of this representation using a first-order Tayl...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2020-09, Vol.33 (3), p.1211-1237 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study a numerical scheme for stochastic differential equations driven by fractional Brownian motion with Hurst parameter
H
∈
1
/
4
,
1
/
2
. Toward this end, we apply Doss–Sussmann representation of the solution and an approximation of this representation using a first-order Taylor expansion. The obtained rate of convergence is
n
-
2
H
+
ρ
, for
ρ
small enough. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-019-00902-3 |