Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models
Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2020-08, Vol.71 (4), Article 135 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 71 |
creator | Wang, Fajie Cai, Wei Zheng, Bin Wang, Chao |
description | Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection–dispersion models are achieved via scaling transformation and the generalized non-Euclidean Hausdorff fractal distance. Comparative numerical investigations of the structural derivative models have been conducted to reveal the influences of various kernels via the meshless method of fundamental solutions. Numerical results verify the validity of the derived fundamental solutions and the rationality of the employed numerical method for structural derivative advection–dispersion models. |
doi_str_mv | 10.1007/s00033-020-01360-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425896023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425896023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e69722d81f01e73c0ad997b340240d4804c94432bc1040b4c52ac8a1e3ebc6f3</originalsourceid><addsrcrecordid>eNp9UElOwzAUtRBIlMIFWFliHfgemjRLVEapEpvuLcf-gVRpXGwnEjvuACfkJLhNJXas_vAm6RFyyeCaARQ3AQCEyIBDBkzkkPEjMmEynSWI8phMAKTMOC9mp-QshHWiFwzEhHzfoW8GHRvXUd1Z2vWb9DC6pYNuGzsCrqbxDWndd1ZvsIsJDa7td1igtfPUpCXqLu4tBu0bXbWYOW_R0xB9b2Lvk8gesgak2g5odgY_n1-2CVv0YZe0cRbbcE5Oat0GvDjMKVk93K8WT9ny5fF5cbvMjGBlzDAvC87tnNXAsBAGtC3LohISuAQr5yBNKaXglWEgoZJmxrWZa4YCK5PXYkquRtutd-89hqjWrvddSlRc8tm8zIGLxOIjy3gXgsdabX2z0f5DMVC78tVYvkrlq335iieRGEUhkbtX9H_W_6h-Aa02jEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425896023</pqid></control><display><type>article</type><title>Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Fajie ; Cai, Wei ; Zheng, Bin ; Wang, Chao</creator><creatorcontrib>Wang, Fajie ; Cai, Wei ; Zheng, Bin ; Wang, Chao</creatorcontrib><description>Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection–dispersion models are achieved via scaling transformation and the generalized non-Euclidean Hausdorff fractal distance. Comparative numerical investigations of the structural derivative models have been conducted to reveal the influences of various kernels via the meshless method of fundamental solutions. Numerical results verify the validity of the derived fundamental solutions and the rationality of the employed numerical method for structural derivative advection–dispersion models.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-020-01360-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Advection ; Dispersion ; Engineering ; Finite element method ; Kernel functions ; Mathematical Methods in Physics ; Mathematical models ; Meshless methods ; Numerical methods ; Theoretical and Applied Mechanics ; Time dependence</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2020-08, Vol.71 (4), Article 135</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e69722d81f01e73c0ad997b340240d4804c94432bc1040b4c52ac8a1e3ebc6f3</citedby><cites>FETCH-LOGICAL-c319t-e69722d81f01e73c0ad997b340240d4804c94432bc1040b4c52ac8a1e3ebc6f3</cites><orcidid>0000-0002-5162-1099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-020-01360-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-020-01360-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Fajie</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><title>Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection–dispersion models are achieved via scaling transformation and the generalized non-Euclidean Hausdorff fractal distance. Comparative numerical investigations of the structural derivative models have been conducted to reveal the influences of various kernels via the meshless method of fundamental solutions. Numerical results verify the validity of the derived fundamental solutions and the rationality of the employed numerical method for structural derivative advection–dispersion models.</description><subject>Advection</subject><subject>Dispersion</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Kernel functions</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Meshless methods</subject><subject>Numerical methods</subject><subject>Theoretical and Applied Mechanics</subject><subject>Time dependence</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UElOwzAUtRBIlMIFWFliHfgemjRLVEapEpvuLcf-gVRpXGwnEjvuACfkJLhNJXas_vAm6RFyyeCaARQ3AQCEyIBDBkzkkPEjMmEynSWI8phMAKTMOC9mp-QshHWiFwzEhHzfoW8GHRvXUd1Z2vWb9DC6pYNuGzsCrqbxDWndd1ZvsIsJDa7td1igtfPUpCXqLu4tBu0bXbWYOW_R0xB9b2Lvk8gesgak2g5odgY_n1-2CVv0YZe0cRbbcE5Oat0GvDjMKVk93K8WT9ny5fF5cbvMjGBlzDAvC87tnNXAsBAGtC3LohISuAQr5yBNKaXglWEgoZJmxrWZa4YCK5PXYkquRtutd-89hqjWrvddSlRc8tm8zIGLxOIjy3gXgsdabX2z0f5DMVC78tVYvkrlq335iieRGEUhkbtX9H_W_6h-Aa02jEA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wang, Fajie</creator><creator>Cai, Wei</creator><creator>Zheng, Bin</creator><creator>Wang, Chao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5162-1099</orcidid></search><sort><creationdate>20200801</creationdate><title>Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models</title><author>Wang, Fajie ; Cai, Wei ; Zheng, Bin ; Wang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e69722d81f01e73c0ad997b340240d4804c94432bc1040b4c52ac8a1e3ebc6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Dispersion</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Kernel functions</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Meshless methods</topic><topic>Numerical methods</topic><topic>Theoretical and Applied Mechanics</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fajie</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fajie</au><au>Cai, Wei</au><au>Zheng, Bin</au><au>Wang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>71</volume><issue>4</issue><artnum>135</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection–dispersion models are achieved via scaling transformation and the generalized non-Euclidean Hausdorff fractal distance. Comparative numerical investigations of the structural derivative models have been conducted to reveal the influences of various kernels via the meshless method of fundamental solutions. Numerical results verify the validity of the derived fundamental solutions and the rationality of the employed numerical method for structural derivative advection–dispersion models.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-020-01360-2</doi><orcidid>https://orcid.org/0000-0002-5162-1099</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2020-08, Vol.71 (4), Article 135 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2425896023 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advection Dispersion Engineering Finite element method Kernel functions Mathematical Methods in Physics Mathematical models Meshless methods Numerical methods Theoretical and Applied Mechanics Time dependence |
title | Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20numerical%20validation%20of%20the%20fundamental%20solutions%20for%20constant%20and%20variable-order%20structural%20derivative%20advection%E2%80%93dispersion%20models&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Wang,%20Fajie&rft.date=2020-08-01&rft.volume=71&rft.issue=4&rft.artnum=135&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-020-01360-2&rft_dat=%3Cproquest_cross%3E2425896023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425896023&rft_id=info:pmid/&rfr_iscdi=true |