Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models

Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2020-08, Vol.71 (4), Article 135
Hauptverfasser: Wang, Fajie, Cai, Wei, Zheng, Bin, Wang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 71
creator Wang, Fajie
Cai, Wei
Zheng, Bin
Wang, Chao
description Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection–dispersion models are achieved via scaling transformation and the generalized non-Euclidean Hausdorff fractal distance. Comparative numerical investigations of the structural derivative models have been conducted to reveal the influences of various kernels via the meshless method of fundamental solutions. Numerical results verify the validity of the derived fundamental solutions and the rationality of the employed numerical method for structural derivative advection–dispersion models.
doi_str_mv 10.1007/s00033-020-01360-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425896023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425896023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e69722d81f01e73c0ad997b340240d4804c94432bc1040b4c52ac8a1e3ebc6f3</originalsourceid><addsrcrecordid>eNp9UElOwzAUtRBIlMIFWFliHfgemjRLVEapEpvuLcf-gVRpXGwnEjvuACfkJLhNJXas_vAm6RFyyeCaARQ3AQCEyIBDBkzkkPEjMmEynSWI8phMAKTMOC9mp-QshHWiFwzEhHzfoW8GHRvXUd1Z2vWb9DC6pYNuGzsCrqbxDWndd1ZvsIsJDa7td1igtfPUpCXqLu4tBu0bXbWYOW_R0xB9b2Lvk8gesgak2g5odgY_n1-2CVv0YZe0cRbbcE5Oat0GvDjMKVk93K8WT9ny5fF5cbvMjGBlzDAvC87tnNXAsBAGtC3LohISuAQr5yBNKaXglWEgoZJmxrWZa4YCK5PXYkquRtutd-89hqjWrvddSlRc8tm8zIGLxOIjy3gXgsdabX2z0f5DMVC78tVYvkrlq335iieRGEUhkbtX9H_W_6h-Aa02jEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425896023</pqid></control><display><type>article</type><title>Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Fajie ; Cai, Wei ; Zheng, Bin ; Wang, Chao</creator><creatorcontrib>Wang, Fajie ; Cai, Wei ; Zheng, Bin ; Wang, Chao</creatorcontrib><description>Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection–dispersion models are achieved via scaling transformation and the generalized non-Euclidean Hausdorff fractal distance. Comparative numerical investigations of the structural derivative models have been conducted to reveal the influences of various kernels via the meshless method of fundamental solutions. Numerical results verify the validity of the derived fundamental solutions and the rationality of the employed numerical method for structural derivative advection–dispersion models.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-020-01360-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Advection ; Dispersion ; Engineering ; Finite element method ; Kernel functions ; Mathematical Methods in Physics ; Mathematical models ; Meshless methods ; Numerical methods ; Theoretical and Applied Mechanics ; Time dependence</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2020-08, Vol.71 (4), Article 135</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e69722d81f01e73c0ad997b340240d4804c94432bc1040b4c52ac8a1e3ebc6f3</citedby><cites>FETCH-LOGICAL-c319t-e69722d81f01e73c0ad997b340240d4804c94432bc1040b4c52ac8a1e3ebc6f3</cites><orcidid>0000-0002-5162-1099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-020-01360-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-020-01360-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Fajie</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><title>Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection–dispersion models are achieved via scaling transformation and the generalized non-Euclidean Hausdorff fractal distance. Comparative numerical investigations of the structural derivative models have been conducted to reveal the influences of various kernels via the meshless method of fundamental solutions. Numerical results verify the validity of the derived fundamental solutions and the rationality of the employed numerical method for structural derivative advection–dispersion models.</description><subject>Advection</subject><subject>Dispersion</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Kernel functions</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Meshless methods</subject><subject>Numerical methods</subject><subject>Theoretical and Applied Mechanics</subject><subject>Time dependence</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UElOwzAUtRBIlMIFWFliHfgemjRLVEapEpvuLcf-gVRpXGwnEjvuACfkJLhNJXas_vAm6RFyyeCaARQ3AQCEyIBDBkzkkPEjMmEynSWI8phMAKTMOC9mp-QshHWiFwzEhHzfoW8GHRvXUd1Z2vWb9DC6pYNuGzsCrqbxDWndd1ZvsIsJDa7td1igtfPUpCXqLu4tBu0bXbWYOW_R0xB9b2Lvk8gesgak2g5odgY_n1-2CVv0YZe0cRbbcE5Oat0GvDjMKVk93K8WT9ny5fF5cbvMjGBlzDAvC87tnNXAsBAGtC3LohISuAQr5yBNKaXglWEgoZJmxrWZa4YCK5PXYkquRtutd-89hqjWrvddSlRc8tm8zIGLxOIjy3gXgsdabX2z0f5DMVC78tVYvkrlq335iieRGEUhkbtX9H_W_6h-Aa02jEA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wang, Fajie</creator><creator>Cai, Wei</creator><creator>Zheng, Bin</creator><creator>Wang, Chao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5162-1099</orcidid></search><sort><creationdate>20200801</creationdate><title>Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models</title><author>Wang, Fajie ; Cai, Wei ; Zheng, Bin ; Wang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e69722d81f01e73c0ad997b340240d4804c94432bc1040b4c52ac8a1e3ebc6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Dispersion</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Kernel functions</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Meshless methods</topic><topic>Numerical methods</topic><topic>Theoretical and Applied Mechanics</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fajie</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fajie</au><au>Cai, Wei</au><au>Zheng, Bin</au><au>Wang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>71</volume><issue>4</issue><artnum>135</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection–dispersion models are achieved via scaling transformation and the generalized non-Euclidean Hausdorff fractal distance. Comparative numerical investigations of the structural derivative models have been conducted to reveal the influences of various kernels via the meshless method of fundamental solutions. Numerical results verify the validity of the derived fundamental solutions and the rationality of the employed numerical method for structural derivative advection–dispersion models.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-020-01360-2</doi><orcidid>https://orcid.org/0000-0002-5162-1099</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2020-08, Vol.71 (4), Article 135
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2425896023
source SpringerLink Journals - AutoHoldings
subjects Advection
Dispersion
Engineering
Finite element method
Kernel functions
Mathematical Methods in Physics
Mathematical models
Meshless methods
Numerical methods
Theoretical and Applied Mechanics
Time dependence
title Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20numerical%20validation%20of%20the%20fundamental%20solutions%20for%20constant%20and%20variable-order%20structural%20derivative%20advection%E2%80%93dispersion%20models&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Wang,%20Fajie&rft.date=2020-08-01&rft.volume=71&rft.issue=4&rft.artnum=135&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-020-01360-2&rft_dat=%3Cproquest_cross%3E2425896023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425896023&rft_id=info:pmid/&rfr_iscdi=true