Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection–dispersion models

Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2020-08, Vol.71 (4), Article 135
Hauptverfasser: Wang, Fajie, Cai, Wei, Zheng, Bin, Wang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various non-local structural derivative diffusion models have been proposed based on different kernel functions to describe the anomalous time dependence of the mean-squared displacements. In the present study, the fundamental solutions for constant and variable-order structural derivative advection–dispersion models are achieved via scaling transformation and the generalized non-Euclidean Hausdorff fractal distance. Comparative numerical investigations of the structural derivative models have been conducted to reveal the influences of various kernels via the meshless method of fundamental solutions. Numerical results verify the validity of the derived fundamental solutions and the rationality of the employed numerical method for structural derivative advection–dispersion models.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-020-01360-2