Classification of equation of state in relativistic heavy-ion collisions using deep learning

A bstract Convolutional Neural Nets, which is a powerful method of Deep Learning, is applied to classify equation of state of heavy-ion collision event generated within the UrQMD model. Event-by-event transverse momentum and azimuthal angle distributions of protons are used to train a classifier. An...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-07, Vol.2020 (7), p.1-15, Article 133
Hauptverfasser: Kvasiuk, Yu, Zabrodin, E., Bravina, L., Didur, I., Frolov, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Convolutional Neural Nets, which is a powerful method of Deep Learning, is applied to classify equation of state of heavy-ion collision event generated within the UrQMD model. Event-by-event transverse momentum and azimuthal angle distributions of protons are used to train a classifier. An overall accuracy of classification of 98% is reached for Au+Au events at s NN = 11 GeV. Performance of classifiers, trained on events at different colliding energies, is investigated. Obtained results indicate extensive possibilities of application of Deep Learning methods to other problems in physics of heavy- ion collisions.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2020)133