A Correspondence Between Homogeneous and Galois Coactions of Hopf Algebras
Let H be a Hopf algebra. A unital H -comodule algebra is called homogeneous if the algebra of coinvariants equals the ground field. A (not necessarily unital) H -comodule algebra is called Galois, or principal, or free, if the canonical map, also known as the Galois map, is bijective. In this paper,...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2020-08, Vol.23 (4), p.1387-1416 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
H
be a Hopf algebra. A unital
H
-comodule algebra is called
homogeneous
if the algebra of coinvariants equals the ground field. A (not necessarily unital)
H
-comodule algebra is called Galois, or principal, or free, if the canonical map, also known as the Galois map, is bijective. In this paper, we establish a duality between a particular class of homogeneous
H
-comodule algebras, up to
H
-Morita equivalence, and a particular class of Galois
H
-comodule algebras, up to
H
-comodule algebra isomorphism. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-019-09892-6 |