A Correspondence Between Homogeneous and Galois Coactions of Hopf Algebras

Let H be a Hopf algebra. A unital H -comodule algebra is called homogeneous if the algebra of coinvariants equals the ground field. A (not necessarily unital) H -comodule algebra is called Galois, or principal, or free, if the canonical map, also known as the Galois map, is bijective. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2020-08, Vol.23 (4), p.1387-1416
Hauptverfasser: De Commer, Kenny, Konings, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be a Hopf algebra. A unital H -comodule algebra is called homogeneous if the algebra of coinvariants equals the ground field. A (not necessarily unital) H -comodule algebra is called Galois, or principal, or free, if the canonical map, also known as the Galois map, is bijective. In this paper, we establish a duality between a particular class of homogeneous H -comodule algebras, up to H -Morita equivalence, and a particular class of Galois H -comodule algebras, up to H -comodule algebra isomorphism.
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-019-09892-6