Initial Tracking Parameter Estimation of Magnetic Ship Based on PSO
We consider the problem of tracking a surface magnetic ship as it travels in a straight line path with the exertion of a magnetometer located at the seabed. Note that the initial filter parameters are prior information and the tracking performance depends on the initial filter parameters, and tradit...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of tracking a surface magnetic ship as it travels in a straight line path with the exertion of a magnetometer located at the seabed. Note that the initial filter parameters are prior information and the tracking performance depends on the initial filter parameters, and traditional estimation of initial filter parameters is to apply the filter bank algorithm, but there are several obvious defects in this method. In this paper, a novel algorithm based on the particle swarm optimization (PSO) algorithm is proposed to estimate initial parameters of the filter, and the model of uniformly magnetized ellipsoid is adopted to fit the magnetic field of the ship. The simulation results show that, under the condition of no prior information, the estimated ship parameters based on the observation of the single-observer are invalid, whereas the estimated ship parameters based on the observation of the double-observer are valid. Further, the estimated results of real-world recorded magnetic signals show that the ship parameters estimated by PSO based on the double-observer are also valid, as the estimated parameters are used as the initial parameters of the unscented Kalman filter (UKF), and a ship can be tracked effectively by the UKF filter. Moreover, the estimated half focal length can be used as a feature to distinguish noise environment, ships with different sizes, and mine sweepers. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/7560474 |