Uniform, on the Real Line, Equiconvergence of Spectral Expansions for the Higher-Order Differential Operators
Result on the uniform, over the entire real line, equiconvergence of spectral expansions related to the self-adjoint extension of a general differential operation of any even order with coefficients from the one-dimensional Kato class, with the Fourier integral expansion is presented. The statement...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2020-03, Vol.101 (2), p.132-134 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Result on the uniform, over the entire real line, equiconvergence of spectral expansions related to the self-adjoint extension of a general differential operation of any even order with coefficients from the one-dimensional Kato class, with the Fourier integral expansion is presented. The statement is based on the obtained uniform estimates for the spectral function of this operator. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S1064562420020143 |