Detection of inappropriate working conditions for the timing belt in internal-combustion engines using vibration signals and data mining

Abnormal operating conditions for the timing belt can lead to cracks, fatigue, sudden rupture and damage to engines. In this study, an intelligent system was developed to detect and classify high-load operating conditions and high-temperature operating conditions for timing belts. To achieve this, v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2017-02, Vol.231 (3), p.418-432
Hauptverfasser: Khazaee, Meghdad, Banakar, Ahmad, Ghobadian, Barat, Agha Mirsalim, Mostafa, Minaei, Saeid, Jafari, Seyed Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abnormal operating conditions for the timing belt can lead to cracks, fatigue, sudden rupture and damage to engines. In this study, an intelligent system was developed to detect and classify high-load operating conditions and high-temperature operating conditions for timing belts. To achieve this, vibration signals in normal operating conditions, high-load operating conditions and high-temperature operating conditions were collected. Time-domain signals were transformed to the frequency domain and the time–frequency domain using the fast Fourier transform method and the wavelet transform method respectively. In the data-mining stage, 25 statistical features were extracted from different signal domains. The improved distance evaluation method was adopted to select the best features and to reduce the input space for the classifier. Then, the signal features from the time domain, the frequency domain and the time-frequency domain were fed into an artificial neural network to evaluate the accuracy of this designed procedure for detecting inappropriate operating conditions for the timing belt. Based on all these features extracted from the signals in the time, frequency and time–frequency domains, the artificial neural network classifier detected and classified normal operating conditions, high-load operating conditions and high-temperature operating conditions with accuracies of 73.3%, 85% and 89.2% respectively. The classification accuracies using features selected by improved distance evaluation in the signals from the time, frequency and time–frequency domains were found to be 85%, 95.8% and 95% respectively. The results showed that the developed system was capable of detecting and classifying both the normal operating conditions and abnormal operating conditions for the timing belt. The results also suggested that a combination of signal processing and feature selection can significantly enhance the classification accuracy.
ISSN:0954-4070
2041-2991
DOI:10.1177/0954407016641323