Evaluation of through-thickness residual stresses in conventional and narrow grooved stainless steel welds
Thick AISI 304L stainless steel plates were welded using the gas metal arc welding process, and through-thickness residual stresses were evaluated by finite element simulation and the deep hole drilling technique. 3D moving heat source-based thermo-mechanical models were implemented to evaluate thro...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2020-08, Vol.234 (8), p.1165-1179, Article 1464420720930355 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thick AISI 304L stainless steel plates were welded using the gas metal arc welding process, and through-thickness residual stresses were evaluated by finite element simulation and the deep hole drilling technique. 3D moving heat source-based thermo-mechanical models were implemented to evaluate through-thickness residual stresses. The effects of the weld groove geometries and external restraints on the pattern of through-thickness residual stresses were studied. The maximum magnitude of locked-in residual stresses was recorded beneath the top surface, at a depth of around 6 mm. In comparison to conventional weld groove, the narrow weld groove configuration exhibited a 20–40% reduction in peak residual stresses. A significant rise in residual stresses was observed in constrained welds. The effect of the yield strength of the filler material on the evaluation of the through-thickness residual stress distribution in the course of finite element modeling was illustrated. The evolution of through-thickness residual stresses was also assessed concerning each weld pass. |
---|---|
ISSN: | 1464-4207 2041-3076 |
DOI: | 10.1177/1464420720930355 |