Automated detection of chronic kidney disease using higher-order features and elongated quinary patterns from B-mode ultrasound images
Chronic kidney disease (CKD) is a continuing loss of kidney function, and early detection of this disease is fundamental to halting its progression to end-stage disease. Numerous methods have been proposed to detect CKD, mainly focusing on classification based upon peripheral clinical parameters and...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2020-08, Vol.32 (15), p.11163-11172 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chronic kidney disease (CKD) is a continuing loss of kidney function, and early detection of this disease is fundamental to halting its progression to end-stage disease. Numerous methods have been proposed to detect CKD, mainly focusing on classification based upon peripheral clinical parameters and quantitative ultrasound parameters that must be manually calculated, or on shear wave elastography. No studies have been found that detect the presence or absence of CKD based solely from one B-mode ultrasound image. In this work, we propose an automated system to detect chronic kidney disease utilizing only the automatic extraction of features from a B-mode ultrasound image of the kidney, with a database of 405 images. Higher-order bispectrum and cumulants, and elongated quinary patterns, are extracted from each image to provide a final total of 24,480 features per image. These features were subjected to a locality sensitive discriminant analysis (LSDA) technique, which provides 30 LSDA coefficients. The coefficients were arranged according to their t value and inserted into various classifiers, to yield the best diagnostic accuracy using the least number of features. The best performance was obtained using a support vector machine and a radial basis function, utilizing only five features, resulting in an accuracy of 99.75%, a sensitivity of 100%, and a specificity of 99.57%. Based upon these findings, it is evident that the technique accurately and automatically identifies subjects with and without CKD from B-mode ultrasound images. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-019-04025-y |