Operational Restrictions in General Probabilistic Theories
The formalism of general probabilistic theories provides a universal paradigm that is suitable for describing various physical systems including classical and quantum ones as particular cases. Contrary to the usual no-restriction hypothesis, the set of accessible meters within a given theory can be...
Gespeichert in:
Veröffentlicht in: | Foundations of physics 2020-08, Vol.50 (8), p.850-876 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The formalism of general probabilistic theories provides a universal paradigm that is suitable for describing various physical systems including classical and quantum ones as particular cases. Contrary to the usual no-restriction hypothesis, the set of accessible meters within a given theory can be limited for different reasons, and this raises a question of what restrictions on meters are operationally relevant. We argue that all operational restrictions must be closed under simulation, where the simulation scheme involves mixing and classical post-processing of meters. We distinguish three classes of such operational restrictions: restrictions on meters originating from restrictions on effects; restrictions on meters that do not restrict the set of effects in any way; and all other restrictions. We fully characterize the first class of restrictions and discuss its connection to convex effect subalgebras. We show that the restrictions belonging to the second class can impose severe physical limitations despite the fact that all effects are accessible, which takes place, e.g., in the unambiguous discrimination of pure quantum states via effectively dichotomic meters. We further demonstrate that there are physically meaningful restrictions that fall into the third class. The presented study of operational restrictions provides a better understanding on how accessible measurements modify general probabilistic theories and quantum theory in particular. |
---|---|
ISSN: | 0015-9018 1572-9516 |
DOI: | 10.1007/s10701-020-00352-6 |