Strength-increase mechanism and microstructural characteristics of a biotreated geomaterial

Microbially induced calcite precipitation (MICP) is a recently proposed method that is environmentally friendly and has considerable potential applications in artificial biotreated geomaterials. New artificial biotreated geomaterials are produced based on the MICP technology for different parent soi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Structural and Civil Engineering 2020-06, Vol.14 (3), p.599-608
Hauptverfasser: LI, Chi, BAI, Siriguleng, ZHOU, Tuanjie, LIU, Hanlong, QIN, Xiao, LIU, Shihui, LIU, Xiaoying, XIAO, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbially induced calcite precipitation (MICP) is a recently proposed method that is environmentally friendly and has considerable potential applications in artificial biotreated geomaterials. New artificial biotreated geomaterials are produced based on the MICP technology for different parent soils. The purpose of this study is to explore the strength-increase mechanism and microstructural characteristics of the biotreated geomaterial through a series of experiments. The results show that longer mineralization time results in higher-strength biotreated geomaterial. The strength growth rate rapidly increases in the beginning and remains stable afterwards. The calcium ion content significantly increases with the extended mineralization time. When standard sand was used as a parent soil, the calcium ion content increased to a factor of 39 after 7 days. The bacterial cells with attached calcium ions serve as the nucleus of crystallization and fill the pore space. When fine sand was used as a parent soil, the calcium ion content increased to only a factor of 7 after 7 days of mineralization. The nucleus of crystallization could not normally grow because of the limited pore space. The porosity and variation in porosity are clearly affected by the parent soil. Therefore, the strength of the biotreated geomaterial is affected by the parent soil properties, mineralization time, and granular material pore space. This paper provides a basis for theory and experiments for biotreated geomaterials in future engineering practice.
ISSN:2095-2430
2095-2449
DOI:10.1007/s11709-020-0606-7