On geometric posets and partial matroids
The aim of this paper is to extend the notions of geometric lattices, semimodularity and matroids in the framework of finite posets and related systems of sets. We define a geometric poset as one which is atomistic and which satisfies particular conditions connecting elements to atoms. Next, by usin...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2020-08, Vol.81 (3), Article 42 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to extend the notions of geometric lattices, semimodularity and matroids in the framework of finite posets and related systems of sets. We define a geometric poset as one which is atomistic and which satisfies particular conditions connecting elements to atoms. Next, by using a suitable partial closure operator and the corresponding partial closure system, we define a partial matroid. We prove that the range of a partial matroid is a geometric poset under inclusion, and conversely, that every finite geometric poset is isomorphic to the range of a particular partial matroid. Finally, by introducing a new generalization of semimodularity from lattices to posets, we prove that a poset is geometric if and only if it is atomistic and semimodular. |
---|---|
ISSN: | 0002-5240 1420-8911 |
DOI: | 10.1007/s00012-020-00673-7 |