Joint Adaptive Blind Channel Estimation and Data Detection for MIMO-OFDM Systems

In order to track a changing channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems, it is a priority to estimate channel impulse response adaptively. In this paper, we propose an adaptive blind channel estimation method based on parallel factor anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2020, Vol.2020 (2020), p.1-9
Hauptverfasser: Yang, Ruo-Nan, Lou, Shun-Tian, Zhang, Wei-Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to track a changing channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems, it is a priority to estimate channel impulse response adaptively. In this paper, we propose an adaptive blind channel estimation method based on parallel factor analysis (PARAFAC). We used an exponential window to weigh the past observations; thus, the cost function can be constructed via a weighted least squares criterion. The minimization of the cost function is equivalent to the decomposition of a third-order tensor, which consists of the weighted OFDM data symbols. By preserving the Khatri-Rao product, we used a recursive least squares solution to update the estimated subspace at each time instant, then the channel parameters can be estimated adaptively, and the algorithm achieves superior convergence performance. Simulation results validate the effectiveness of the proposed algorithm.
ISSN:1530-8669
1530-8677
DOI:10.1155/2020/2508130