Ball milling-derived nanostructured Li3VO4 anode with enhanced surface-confined capacitive contribution for lithium ion capacitors
To balance the kinetics gap between anode/cathode of lithium ion capacitors (LICs), we developed a straightforward ball milling method to tune the electrochemical performance of Li 3 VO 4 (LVO) particles. After the mechanical crushing, the particle size of the pristine LVO with a densely bulky struc...
Gespeichert in:
Veröffentlicht in: | Ionics 2020-08, Vol.26 (8), p.4129-4140 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To balance the kinetics gap between anode/cathode of lithium ion capacitors (LICs), we developed a straightforward ball milling method to tune the electrochemical performance of Li
3
VO
4
(LVO) particles. After the mechanical crushing, the particle size of the pristine LVO with a densely bulky structure is reduced significantly; furthermore, a partial transition from V
5+
to V
4+
may induce the oxygen vacancy, resulting into the shortened Li
+
diffusion path and low diffusion barrier. More active sites are exposed, and the long-range ordering of the structure is disturbed, leading to a fast Li
+
transport on the surface or subsurface. The calculated capacitive contribution ratio achieves 49.6% at the lowest scan rate. The LICs deliver high energy and power densities (max. 108.5 Wh kg
−1
at 114.5 W kg
−1
, 1180 W kg
−1
at 21 Wh kg
−1
), revealing the efficiency of ball milling to facilitate the surface-induced capacitive contribution toward high-performance LICs. |
---|---|
ISSN: | 0947-7047 1862-0760 |
DOI: | 10.1007/s11581-020-03537-1 |