Structure and good piezoelectric performance in the complex system of Pb[(Zn,Ni)Nb]O3–Pb[(In,Yb)Nb]O3–Pb(Zr,Hf,Ti)O3
High-performance piezoelectrics are always demanded for the high-end application. Herein, a complex piezoelectric system of 0.49Pb(Zn1/2Ni1/2)1/3Nb2/3O3–xPb(In1/2Yb1/2)1/2Nb1/2O3–(0.51 − x)Pb(Zr1/2Hf1/2)0.1Ti0.9O3 (0.16 ≤ x ≤ 0.23) was fabricated through the solid-state method. The structure, ferroe...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-07, Vol.128 (2) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-performance piezoelectrics are always demanded for the high-end application. Herein, a complex piezoelectric system of 0.49Pb(Zn1/2Ni1/2)1/3Nb2/3O3–xPb(In1/2Yb1/2)1/2Nb1/2O3–(0.51 − x)Pb(Zr1/2Hf1/2)0.1Ti0.9O3 (0.16 ≤ x ≤ 0.23) was fabricated through the solid-state method. The structure, ferroelectric, piezoelectric, and dielectric properties were investigated. The optimum piezoelectric coefficient d33 of 761 pC/N, high Curie temperature of 169 °C, dielectric permittivity (ɛr) of 4557, and electromechanical coupling coefficient (kp) of 63% were found at the morphotropic phase boundary composition of x = 0.19, which are superior to other complex piezoelectric materials. In particular, a significant large-signal
d
33
∗ of 913 pm/V and low strain hysteresis (6%) was obtained in the temperature range of 20–170 °C. Temperature-dependent x-ray diffraction (XRD) has demonstrated that good temperature stability is put down to the structure stability. The agreement between the calculated lattice strain from in situ high-energy synchrotron XRD data and the macroscopic measurements suggests that the large lattice strain has a dominant contribution to the high piezoelectric response. The high piezoelectric performance and good temperature stability makes it potential for application. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0006390 |