DART: Open-Domain Structured Data Record to Text Generation

We present DART, an open domain structured DAta Record to Text generation dataset with over 82k instances (DARTs). Data-to-Text annotations can be a costly process, especially when dealing with tables which are the major source of structured data and contain nontrivial structures. To this end, we pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Linyong Nan, Radev, Dragomir, Zhang, Rui, Rau, Amrit, Sivaprasad, Abhinand, Hsieh, Chiachun, Tang, Xiangru, Vyas, Aadit, Verma, Neha, Krishna, Pranav, Liu, Yangxiaokang, Irwanto, Nadia, Pan, Jessica, Rahman, Faiaz, Zaidi, Ahmad, Mutuma, Mutethia, Tarabar, Yasin, Gupta, Ankit, Yu, Tao, Tan, Yi Chern, Lin, Xi Victoria, Xiong, Caiming, Socher, Richard, Rajani, Nazneen Fatema
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present DART, an open domain structured DAta Record to Text generation dataset with over 82k instances (DARTs). Data-to-Text annotations can be a costly process, especially when dealing with tables which are the major source of structured data and contain nontrivial structures. To this end, we propose a procedure of extracting semantic triples from tables that encodes their structures by exploiting the semantic dependencies among table headers and the table title. Our dataset construction framework effectively merged heterogeneous sources from open domain semantic parsing and dialogue-act-based meaning representation tasks by utilizing techniques such as: tree ontology annotation, question-answer pair to declarative sentence conversion, and predicate unification, all with minimum post-editing. We present systematic evaluation on DART as well as new state-of-the-art results on WebNLG 2017 to show that DART (1) poses new challenges to existing data-to-text datasets and (2) facilitates out-of-domain generalization. Our data and code can be found at https://github.com/Yale-LILY/dart.
ISSN:2331-8422