Positive Liouville theorem and asymptotic behaviour for \((p,A)\)-Laplacian type elliptic equations with Fuchsian potentials in Morrey space
We study Liouville-type theorems and the asymptotic behaviour of positive solutions near an isolated singular point \(\zeta\in\partial\Omega\cup\{\infty\}\) of the quasilinear elliptic equations $$-\text{div}(|\nabla u|_A^{p-2}A\nabla u)+V|u|^{p-2}u =0\quad\text{in } \Omega\setminus\{\zeta\},$$ wher...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Liouville-type theorems and the asymptotic behaviour of positive solutions near an isolated singular point \(\zeta\in\partial\Omega\cup\{\infty\}\) of the quasilinear elliptic equations $$-\text{div}(|\nabla u|_A^{p-2}A\nabla u)+V|u|^{p-2}u =0\quad\text{in } \Omega\setminus\{\zeta\},$$ where \(\Omega\) is a domain in \(\mathbb{R}^d\) (\(d\geq 2\)), and \(A=(a_{ij})\in L_{\rm loc}^{\infty}(\Omega;\mathbb{R}^{d\times d})\) is a symmetric and locally uniformly positive definite matrix. The potential \(V\) lies in a certain local Morrey space (depending on \(p\)) and has a Fuchsian-type isolated singularity at \(\zeta\). |
---|---|
ISSN: | 2331-8422 |