Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation

When the elevation of targets is smaller than beamwidth, the coherent multi-path signals will significantly degrade the direction of arrival (DOA) estimation accuracy of existing methods for a very-high-frequency (VHF) radar system. Through detailed theoretical analysis, we demonstrate that the phas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2020-08, Vol.50 (8), p.2411-2422
Hauptverfasser: Xiang, Houhong, Chen, Baixiao, Yang, Ting, Liu, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2422
container_issue 8
container_start_page 2411
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 50
creator Xiang, Houhong
Chen, Baixiao
Yang, Ting
Liu, Dong
description When the elevation of targets is smaller than beamwidth, the coherent multi-path signals will significantly degrade the direction of arrival (DOA) estimation accuracy of existing methods for a very-high-frequency (VHF) radar system. Through detailed theoretical analysis, we demonstrate that the phase distortion is the key factor of degrading the accuracy of DOA estimation. Hence, a novel phase enhancement model based on supervised convolutional neural network (CNN) for coherent DOA estimation is proposed to mitigate the phase distortion and improve estimation accuracy. The results of simulation experiments and real data have demonstrated the superiority of proposed method in DOA estimation accuracy and resolution compared to classic physics-driven methods. Moreover, the proposed scheme is suitable for the coherent DOA estimation compared with existing data-driven methods.
doi_str_mv 10.1007/s10489-020-01678-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420903111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420903111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3cd01b22b21c7b2365e91fa156e5203b7b1fad05e14ef6cbf882115116b0bb1c3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKeA5-hMsp_HUj-hUA8K3sImm7Wt26QmuxX_e7NdwZunYYbfe_N4hFwiXCNAfhMQkqJkwIEBZnnBkiMywTQXLE_K_JhMoOQJy7Ly7ZSchbABACEAJ6R-XlXBUGNXldVma2xHt642LVXxXFNnaeh3xu_Xw6ad3bu279bOVi21pveH0X05_0Eb5yOwMn7wuF3OqAndelsN8Dk5aao2mIvfOSWv93cv80e2WD48zWcLpgWWHRO6BlScK446V1xkqSmxqTDNTMpBqFzFrYbUYGKaTKumKDhiipgpUAq1mJKr0Xfn3Wcf_8uN633MGiRPOJQgEDFSfKS0dyF408idj0H9t0SQQ5tybFPGNuWhTZlEkRhFIcL23fg_639UP-C1eSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420903111</pqid></control><display><type>article</type><title>Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation</title><source>Springer Nature - Complete Springer Journals</source><creator>Xiang, Houhong ; Chen, Baixiao ; Yang, Ting ; Liu, Dong</creator><creatorcontrib>Xiang, Houhong ; Chen, Baixiao ; Yang, Ting ; Liu, Dong</creatorcontrib><description>When the elevation of targets is smaller than beamwidth, the coherent multi-path signals will significantly degrade the direction of arrival (DOA) estimation accuracy of existing methods for a very-high-frequency (VHF) radar system. Through detailed theoretical analysis, we demonstrate that the phase distortion is the key factor of degrading the accuracy of DOA estimation. Hence, a novel phase enhancement model based on supervised convolutional neural network (CNN) for coherent DOA estimation is proposed to mitigate the phase distortion and improve estimation accuracy. The results of simulation experiments and real data have demonstrated the superiority of proposed method in DOA estimation accuracy and resolution compared to classic physics-driven methods. Moreover, the proposed scheme is suitable for the coherent DOA estimation compared with existing data-driven methods.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-020-01678-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Artificial Intelligence ; Artificial neural networks ; Coherence ; Computer Science ; Computer simulation ; Direction of arrival ; Machines ; Manufacturing ; Mechanical Engineering ; Neural networks ; Phase distortion ; Processes ; Radar equipment ; Very high frequencies</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2020-08, Vol.50 (8), p.2411-2422</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3cd01b22b21c7b2365e91fa156e5203b7b1fad05e14ef6cbf882115116b0bb1c3</citedby><cites>FETCH-LOGICAL-c319t-3cd01b22b21c7b2365e91fa156e5203b7b1fad05e14ef6cbf882115116b0bb1c3</cites><orcidid>0000-0001-7320-327X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-020-01678-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-020-01678-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Xiang, Houhong</creatorcontrib><creatorcontrib>Chen, Baixiao</creatorcontrib><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><title>Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>When the elevation of targets is smaller than beamwidth, the coherent multi-path signals will significantly degrade the direction of arrival (DOA) estimation accuracy of existing methods for a very-high-frequency (VHF) radar system. Through detailed theoretical analysis, we demonstrate that the phase distortion is the key factor of degrading the accuracy of DOA estimation. Hence, a novel phase enhancement model based on supervised convolutional neural network (CNN) for coherent DOA estimation is proposed to mitigate the phase distortion and improve estimation accuracy. The results of simulation experiments and real data have demonstrated the superiority of proposed method in DOA estimation accuracy and resolution compared to classic physics-driven methods. Moreover, the proposed scheme is suitable for the coherent DOA estimation compared with existing data-driven methods.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Coherence</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Direction of arrival</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Phase distortion</subject><subject>Processes</subject><subject>Radar equipment</subject><subject>Very high frequencies</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1LAzEQxYMoWKv_gKeA5-hMsp_HUj-hUA8K3sImm7Wt26QmuxX_e7NdwZunYYbfe_N4hFwiXCNAfhMQkqJkwIEBZnnBkiMywTQXLE_K_JhMoOQJy7Ly7ZSchbABACEAJ6R-XlXBUGNXldVma2xHt642LVXxXFNnaeh3xu_Xw6ad3bu279bOVi21pveH0X05_0Eb5yOwMn7wuF3OqAndelsN8Dk5aao2mIvfOSWv93cv80e2WD48zWcLpgWWHRO6BlScK446V1xkqSmxqTDNTMpBqFzFrYbUYGKaTKumKDhiipgpUAq1mJKr0Xfn3Wcf_8uN633MGiRPOJQgEDFSfKS0dyF408idj0H9t0SQQ5tybFPGNuWhTZlEkRhFIcL23fg_639UP-C1eSI</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Xiang, Houhong</creator><creator>Chen, Baixiao</creator><creator>Yang, Ting</creator><creator>Liu, Dong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7320-327X</orcidid></search><sort><creationdate>20200801</creationdate><title>Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation</title><author>Xiang, Houhong ; Chen, Baixiao ; Yang, Ting ; Liu, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3cd01b22b21c7b2365e91fa156e5203b7b1fad05e14ef6cbf882115116b0bb1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Coherence</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Direction of arrival</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Phase distortion</topic><topic>Processes</topic><topic>Radar equipment</topic><topic>Very high frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Houhong</creatorcontrib><creatorcontrib>Chen, Baixiao</creatorcontrib><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Houhong</au><au>Chen, Baixiao</au><au>Yang, Ting</au><au>Liu, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>50</volume><issue>8</issue><spage>2411</spage><epage>2422</epage><pages>2411-2422</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>When the elevation of targets is smaller than beamwidth, the coherent multi-path signals will significantly degrade the direction of arrival (DOA) estimation accuracy of existing methods for a very-high-frequency (VHF) radar system. Through detailed theoretical analysis, we demonstrate that the phase distortion is the key factor of degrading the accuracy of DOA estimation. Hence, a novel phase enhancement model based on supervised convolutional neural network (CNN) for coherent DOA estimation is proposed to mitigate the phase distortion and improve estimation accuracy. The results of simulation experiments and real data have demonstrated the superiority of proposed method in DOA estimation accuracy and resolution compared to classic physics-driven methods. Moreover, the proposed scheme is suitable for the coherent DOA estimation compared with existing data-driven methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-020-01678-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7320-327X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2020-08, Vol.50 (8), p.2411-2422
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2420903111
source Springer Nature - Complete Springer Journals
subjects Accuracy
Artificial Intelligence
Artificial neural networks
Coherence
Computer Science
Computer simulation
Direction of arrival
Machines
Manufacturing
Mechanical Engineering
Neural networks
Phase distortion
Processes
Radar equipment
Very high frequencies
title Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20enhancement%20model%20based%20on%20supervised%20convolutional%20neural%20network%20for%20coherent%20DOA%20estimation&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Xiang,%20Houhong&rft.date=2020-08-01&rft.volume=50&rft.issue=8&rft.spage=2411&rft.epage=2422&rft.pages=2411-2422&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-020-01678-4&rft_dat=%3Cproquest_cross%3E2420903111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420903111&rft_id=info:pmid/&rfr_iscdi=true