Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation

When the elevation of targets is smaller than beamwidth, the coherent multi-path signals will significantly degrade the direction of arrival (DOA) estimation accuracy of existing methods for a very-high-frequency (VHF) radar system. Through detailed theoretical analysis, we demonstrate that the phas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2020-08, Vol.50 (8), p.2411-2422
Hauptverfasser: Xiang, Houhong, Chen, Baixiao, Yang, Ting, Liu, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When the elevation of targets is smaller than beamwidth, the coherent multi-path signals will significantly degrade the direction of arrival (DOA) estimation accuracy of existing methods for a very-high-frequency (VHF) radar system. Through detailed theoretical analysis, we demonstrate that the phase distortion is the key factor of degrading the accuracy of DOA estimation. Hence, a novel phase enhancement model based on supervised convolutional neural network (CNN) for coherent DOA estimation is proposed to mitigate the phase distortion and improve estimation accuracy. The results of simulation experiments and real data have demonstrated the superiority of proposed method in DOA estimation accuracy and resolution compared to classic physics-driven methods. Moreover, the proposed scheme is suitable for the coherent DOA estimation compared with existing data-driven methods.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-020-01678-4