Introducing Highly Redox‐Active Atomic Centers into Insertion‐Type Electrodes for Lithium‐Ion Batteries
The development of alternative anode materials with higher volumetric and gravimetric capacity allowing for fast delithiation and, even more important, lithiation is crucial for next‐generation lithium‐ion batteries. Herein, the development of a completely new active material is reported, which foll...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2020-07, Vol.10 (25), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of alternative anode materials with higher volumetric and gravimetric capacity allowing for fast delithiation and, even more important, lithiation is crucial for next‐generation lithium‐ion batteries. Herein, the development of a completely new active material is reported, which follows an insertion‐type lithiation mechanism, metal‐doped CeO2. Remarkably, the introduction of carefully selected dopants, herein exemplified for iron, results in an increase of the achievable capacity by more than 200%, originating from the reduction of the dopant to the metallic state and additional space for the lithium ion insertion due to a significant off‐centering of the dopant atoms in the crystal structure, away from the original Ce site. In addition to the outstanding performance of such materials in high‐power lithium‐ion full‐cells, the selective reduction of the iron dopant under preservation of the crystal structure of the host material is expected to open up a new field of research.
A novel lithium‐ion battery active material is developed that follows a completely new reaction mechanism: Fe‐doped CeO2. While CeO2 generally hosts Li+ by insertion, the introduction of the slightly off‐centered iron dopant allows for a substantial increase in capacity thanks to the fully reversible reduction of the dopant to the metallic state. |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.202000783 |