Robust DOA Estimator Under Non-Gaussian Noise and Insufficient Sample Support

In this paper, we develop a robust algorithm for improving the accuracy of direction-of-arrival estimation under non-Gaussian noise and insufficient sample support. (The number of sensors is large, while the number of samples is relatively small.) Unlike the traditional peak-search techniques, our a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2020-09, Vol.39 (9), p.4730-4739
Hauptverfasser: Zhang, Hongwang, Zheng, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop a robust algorithm for improving the accuracy of direction-of-arrival estimation under non-Gaussian noise and insufficient sample support. (The number of sensors is large, while the number of samples is relatively small.) Unlike the traditional peak-search techniques, our approach is based on an enhanced covariance matrix estimation, where we exploit the thoughts of the M-estimator and the shrinkage estimator, but devise a new target matrix equation and iterative solution procedure. Numerical results indicate that the proposed algorithm significantly performs better than the existing methods in the presence of non-Gaussian noise and finite samples.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-020-01370-5