Double square moments and subconvexity bounds for Rankin-Selberg L-functions of holomorphic cusp forms

Let f and g be holomorphic cusp forms of weights k 1 and k 2 for the congruence subgroups Γ 0 ( N 1 ) and Γ 0 ( N 2), respectively. In this paper the square moment of the Rankin-Selberg L -function for f and g in the aspect of both weights in short intervals is bounded, when k ε 1 ≪ k 2 ≪ k 1 1-ε ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2020-05, Vol.63 (5), p.823-844
Hauptverfasser: Liu, Jianya, Sun, Haiwei, Ye, Yangbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f and g be holomorphic cusp forms of weights k 1 and k 2 for the congruence subgroups Γ 0 ( N 1 ) and Γ 0 ( N 2), respectively. In this paper the square moment of the Rankin-Selberg L -function for f and g in the aspect of both weights in short intervals is bounded, when k ε 1 ≪ k 2 ≪ k 1 1-ε . These bounds are the mean Lindelöf hypothesis in one case and subconvexity bounds on average in other cases. These square moment estimates also imply subconvexity bounds for individual L ( 1 2 + i t, f × g) for all g when f is chosen outside a small exceptional set. In the best case scenario the subconvexity bound obtained reaches the Weyl-type bound proved by Lau et al. (2006) in both the k 1 and k 2 aspects.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-018-9380-6