Double square moments and subconvexity bounds for Rankin-Selberg L-functions of holomorphic cusp forms
Let f and g be holomorphic cusp forms of weights k 1 and k 2 for the congruence subgroups Γ 0 ( N 1 ) and Γ 0 ( N 2), respectively. In this paper the square moment of the Rankin-Selberg L -function for f and g in the aspect of both weights in short intervals is bounded, when k ε 1 ≪ k 2 ≪ k 1 1-ε ....
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2020-05, Vol.63 (5), p.823-844 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
f
and
g
be holomorphic cusp forms of weights
k
1
and
k
2
for the congruence subgroups Γ
0
(
N
1
) and Γ
0
(
N
2), respectively. In this paper the square moment of the Rankin-Selberg
L
-function for
f
and
g
in the aspect of both weights in short intervals is bounded, when
k
ε
1
≪
k
2
≪
k
1
1-ε
. These bounds are the mean Lindelöf hypothesis in one case and subconvexity bounds on average in other cases. These square moment estimates also imply subconvexity bounds for individual
L
(
1
2
+ i
t, f
×
g)
for all
g
when
f
is chosen outside a small exceptional set. In the best case scenario the subconvexity bound obtained reaches the Weyl-type bound proved by Lau et al. (2006) in both the
k
1
and
k
2
aspects. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-018-9380-6 |