Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications
The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile...
Gespeichert in:
Veröffentlicht in: | Steel research international 2020-07, Vol.91 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Steel research international |
container_volume | 91 |
creator | Chen, Yong Zhang, Xiaoming Cai, Zhihui Ding, Hua Pan, Mingming Wei, Wei Liu, Yuwei |
description | The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile strength (UTS). Mechanical twinning is found to be less active in fine‐grained specimen, leading to the decrease in uniform and total elongations and impact toughness. The existence of dislocations and nanoscale mechanical twins in the initial microstructure contributes to the high YS, and the active mechanical twinning during deformation maintains excellent ductility and impact toughness. The thick twins (generally thicker than 300 nm and formed during hot rolling) play a supplementary role in increasing the instantaneous strain hardening during the late stage of tensile deformation.
The yield strength (YS) and ultimate tensile strength (UTS) increase with the decrease in grain size. The uniform and total elongations and impact toughness decrease with the decrease in grain size. The existence of dislocations and mechanical twins results in a high YS. The thick twins increase the instantaneous strain hardening during the late stage of tensile deformation. |
doi_str_mv | 10.1002/srin.201900660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419632908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419632908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3540-15e594992ca71757be28d985d1735f92f3260fedcf5bc12bcebbb9962a628bb43</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEEqiwMltiTvGfxInHqgJaqQVEQWKLHPfcGgU72I5QN1Y2PiOfhJQiGLnlTqf3e6d7SXJK8JBgTM-DN3ZIMREYc473kiNScpGyLHvc72dOSMp4yQ6TkxCecF-sLHmRHSXvF1qDigE5je5c0xi7Qvfw3IKXsfOAnEVxDWhulHch-k59b6VdojmotbRGyQbdetcD0cC3jUQTs1p_vn3MLRp1IYI10Si0iAAN0s6jsd-4Vb9VaNS2Te8QjbPhODnQsglw8tMHycPlxf14ks5urqbj0SxVLM9wSnLIRSYEVbIgRV7UQMulKPMlKViuBdWMcqxhqXReK0JrBXVdC8Gp5LSs64wNkrOdb-vdSwchVk-u87Y_WdGMCM6owGWvGu5U27-DB1213jxLv6kIrraJV9vEq9_Ee0DsgFfTwOYfdbW4m17_sV-Mv4hH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419632908</pqid></control><display><type>article</type><title>Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications</title><source>Access via Wiley Online Library</source><creator>Chen, Yong ; Zhang, Xiaoming ; Cai, Zhihui ; Ding, Hua ; Pan, Mingming ; Wei, Wei ; Liu, Yuwei</creator><creatorcontrib>Chen, Yong ; Zhang, Xiaoming ; Cai, Zhihui ; Ding, Hua ; Pan, Mingming ; Wei, Wei ; Liu, Yuwei</creatorcontrib><description>The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile strength (UTS). Mechanical twinning is found to be less active in fine‐grained specimen, leading to the decrease in uniform and total elongations and impact toughness. The existence of dislocations and nanoscale mechanical twins in the initial microstructure contributes to the high YS, and the active mechanical twinning during deformation maintains excellent ductility and impact toughness. The thick twins (generally thicker than 300 nm and formed during hot rolling) play a supplementary role in increasing the instantaneous strain hardening during the late stage of tensile deformation.
The yield strength (YS) and ultimate tensile strength (UTS) increase with the decrease in grain size. The uniform and total elongations and impact toughness decrease with the decrease in grain size. The existence of dislocations and mechanical twins results in a high YS. The thick twins increase the instantaneous strain hardening during the late stage of tensile deformation.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.201900660</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Austenitic stainless steels ; Grain size ; grain sizes ; Heat treating ; high-Mn austenitic steels ; Hot rolling ; Impact strength ; Mechanical properties ; Mechanical twinning ; Microstructure ; nanoscale mechanical twins ; Strain hardening ; Tensile deformation ; Toughness ; Ultimate tensile strength ; Yield strength</subject><ispartof>Steel research international, 2020-07, Vol.91 (7), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3540-15e594992ca71757be28d985d1735f92f3260fedcf5bc12bcebbb9962a628bb43</citedby><cites>FETCH-LOGICAL-c3540-15e594992ca71757be28d985d1735f92f3260fedcf5bc12bcebbb9962a628bb43</cites><orcidid>0000-0001-6028-3792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.201900660$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.201900660$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><creatorcontrib>Cai, Zhihui</creatorcontrib><creatorcontrib>Ding, Hua</creatorcontrib><creatorcontrib>Pan, Mingming</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Liu, Yuwei</creatorcontrib><title>Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications</title><title>Steel research international</title><description>The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile strength (UTS). Mechanical twinning is found to be less active in fine‐grained specimen, leading to the decrease in uniform and total elongations and impact toughness. The existence of dislocations and nanoscale mechanical twins in the initial microstructure contributes to the high YS, and the active mechanical twinning during deformation maintains excellent ductility and impact toughness. The thick twins (generally thicker than 300 nm and formed during hot rolling) play a supplementary role in increasing the instantaneous strain hardening during the late stage of tensile deformation.
The yield strength (YS) and ultimate tensile strength (UTS) increase with the decrease in grain size. The uniform and total elongations and impact toughness decrease with the decrease in grain size. The existence of dislocations and mechanical twins results in a high YS. The thick twins increase the instantaneous strain hardening during the late stage of tensile deformation.</description><subject>Austenitic stainless steels</subject><subject>Grain size</subject><subject>grain sizes</subject><subject>Heat treating</subject><subject>high-Mn austenitic steels</subject><subject>Hot rolling</subject><subject>Impact strength</subject><subject>Mechanical properties</subject><subject>Mechanical twinning</subject><subject>Microstructure</subject><subject>nanoscale mechanical twins</subject><subject>Strain hardening</subject><subject>Tensile deformation</subject><subject>Toughness</subject><subject>Ultimate tensile strength</subject><subject>Yield strength</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxSMEEqiwMltiTvGfxInHqgJaqQVEQWKLHPfcGgU72I5QN1Y2PiOfhJQiGLnlTqf3e6d7SXJK8JBgTM-DN3ZIMREYc473kiNScpGyLHvc72dOSMp4yQ6TkxCecF-sLHmRHSXvF1qDigE5je5c0xi7Qvfw3IKXsfOAnEVxDWhulHch-k59b6VdojmotbRGyQbdetcD0cC3jUQTs1p_vn3MLRp1IYI10Si0iAAN0s6jsd-4Vb9VaNS2Te8QjbPhODnQsglw8tMHycPlxf14ks5urqbj0SxVLM9wSnLIRSYEVbIgRV7UQMulKPMlKViuBdWMcqxhqXReK0JrBXVdC8Gp5LSs64wNkrOdb-vdSwchVk-u87Y_WdGMCM6owGWvGu5U27-DB1213jxLv6kIrraJV9vEq9_Ee0DsgFfTwOYfdbW4m17_sV-Mv4hH</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Chen, Yong</creator><creator>Zhang, Xiaoming</creator><creator>Cai, Zhihui</creator><creator>Ding, Hua</creator><creator>Pan, Mingming</creator><creator>Wei, Wei</creator><creator>Liu, Yuwei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6028-3792</orcidid></search><sort><creationdate>202007</creationdate><title>Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications</title><author>Chen, Yong ; Zhang, Xiaoming ; Cai, Zhihui ; Ding, Hua ; Pan, Mingming ; Wei, Wei ; Liu, Yuwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3540-15e594992ca71757be28d985d1735f92f3260fedcf5bc12bcebbb9962a628bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Grain size</topic><topic>grain sizes</topic><topic>Heat treating</topic><topic>high-Mn austenitic steels</topic><topic>Hot rolling</topic><topic>Impact strength</topic><topic>Mechanical properties</topic><topic>Mechanical twinning</topic><topic>Microstructure</topic><topic>nanoscale mechanical twins</topic><topic>Strain hardening</topic><topic>Tensile deformation</topic><topic>Toughness</topic><topic>Ultimate tensile strength</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><creatorcontrib>Cai, Zhihui</creatorcontrib><creatorcontrib>Ding, Hua</creatorcontrib><creatorcontrib>Pan, Mingming</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Liu, Yuwei</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yong</au><au>Zhang, Xiaoming</au><au>Cai, Zhihui</au><au>Ding, Hua</au><au>Pan, Mingming</au><au>Wei, Wei</au><au>Liu, Yuwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications</atitle><jtitle>Steel research international</jtitle><date>2020-07</date><risdate>2020</risdate><volume>91</volume><issue>7</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile strength (UTS). Mechanical twinning is found to be less active in fine‐grained specimen, leading to the decrease in uniform and total elongations and impact toughness. The existence of dislocations and nanoscale mechanical twins in the initial microstructure contributes to the high YS, and the active mechanical twinning during deformation maintains excellent ductility and impact toughness. The thick twins (generally thicker than 300 nm and formed during hot rolling) play a supplementary role in increasing the instantaneous strain hardening during the late stage of tensile deformation.
The yield strength (YS) and ultimate tensile strength (UTS) increase with the decrease in grain size. The uniform and total elongations and impact toughness decrease with the decrease in grain size. The existence of dislocations and mechanical twins results in a high YS. The thick twins increase the instantaneous strain hardening during the late stage of tensile deformation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.201900660</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6028-3792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1611-3683 |
ispartof | Steel research international, 2020-07, Vol.91 (7), p.n/a |
issn | 1611-3683 1869-344X |
language | eng |
recordid | cdi_proquest_journals_2419632908 |
source | Access via Wiley Online Library |
subjects | Austenitic stainless steels Grain size grain sizes Heat treating high-Mn austenitic steels Hot rolling Impact strength Mechanical properties Mechanical twinning Microstructure nanoscale mechanical twins Strain hardening Tensile deformation Toughness Ultimate tensile strength Yield strength |
title | Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Rolling%20Temperature%20on%20the%20Microstructure%20and%20Mechanical%20Properties%20of%20a%20High%E2%80%90Mn%20Austenitic%20Steel%20for%20Cryogenic%20Applications&rft.jtitle=Steel%20research%20international&rft.au=Chen,%20Yong&rft.date=2020-07&rft.volume=91&rft.issue=7&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.201900660&rft_dat=%3Cproquest_cross%3E2419632908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419632908&rft_id=info:pmid/&rfr_iscdi=true |