Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications

The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Steel research international 2020-07, Vol.91 (7), p.n/a
Hauptverfasser: Chen, Yong, Zhang, Xiaoming, Cai, Zhihui, Ding, Hua, Pan, Mingming, Wei, Wei, Liu, Yuwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Steel research international
container_volume 91
creator Chen, Yong
Zhang, Xiaoming
Cai, Zhihui
Ding, Hua
Pan, Mingming
Wei, Wei
Liu, Yuwei
description The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile strength (UTS). Mechanical twinning is found to be less active in fine‐grained specimen, leading to the decrease in uniform and total elongations and impact toughness. The existence of dislocations and nanoscale mechanical twins in the initial microstructure contributes to the high YS, and the active mechanical twinning during deformation maintains excellent ductility and impact toughness. The thick twins (generally thicker than 300 nm and formed during hot rolling) play a supplementary role in increasing the instantaneous strain hardening during the late stage of tensile deformation. The yield strength (YS) and ultimate tensile strength (UTS) increase with the decrease in grain size. The uniform and total elongations and impact toughness decrease with the decrease in grain size. The existence of dislocations and mechanical twins results in a high YS. The thick twins increase the instantaneous strain hardening during the late stage of tensile deformation.
doi_str_mv 10.1002/srin.201900660
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419632908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419632908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3540-15e594992ca71757be28d985d1735f92f3260fedcf5bc12bcebbb9962a628bb43</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEEqiwMltiTvGfxInHqgJaqQVEQWKLHPfcGgU72I5QN1Y2PiOfhJQiGLnlTqf3e6d7SXJK8JBgTM-DN3ZIMREYc473kiNScpGyLHvc72dOSMp4yQ6TkxCecF-sLHmRHSXvF1qDigE5je5c0xi7Qvfw3IKXsfOAnEVxDWhulHch-k59b6VdojmotbRGyQbdetcD0cC3jUQTs1p_vn3MLRp1IYI10Si0iAAN0s6jsd-4Vb9VaNS2Te8QjbPhODnQsglw8tMHycPlxf14ks5urqbj0SxVLM9wSnLIRSYEVbIgRV7UQMulKPMlKViuBdWMcqxhqXReK0JrBXVdC8Gp5LSs64wNkrOdb-vdSwchVk-u87Y_WdGMCM6owGWvGu5U27-DB1213jxLv6kIrraJV9vEq9_Ee0DsgFfTwOYfdbW4m17_sV-Mv4hH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419632908</pqid></control><display><type>article</type><title>Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications</title><source>Access via Wiley Online Library</source><creator>Chen, Yong ; Zhang, Xiaoming ; Cai, Zhihui ; Ding, Hua ; Pan, Mingming ; Wei, Wei ; Liu, Yuwei</creator><creatorcontrib>Chen, Yong ; Zhang, Xiaoming ; Cai, Zhihui ; Ding, Hua ; Pan, Mingming ; Wei, Wei ; Liu, Yuwei</creatorcontrib><description>The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile strength (UTS). Mechanical twinning is found to be less active in fine‐grained specimen, leading to the decrease in uniform and total elongations and impact toughness. The existence of dislocations and nanoscale mechanical twins in the initial microstructure contributes to the high YS, and the active mechanical twinning during deformation maintains excellent ductility and impact toughness. The thick twins (generally thicker than 300 nm and formed during hot rolling) play a supplementary role in increasing the instantaneous strain hardening during the late stage of tensile deformation. The yield strength (YS) and ultimate tensile strength (UTS) increase with the decrease in grain size. The uniform and total elongations and impact toughness decrease with the decrease in grain size. The existence of dislocations and mechanical twins results in a high YS. The thick twins increase the instantaneous strain hardening during the late stage of tensile deformation.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.201900660</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Austenitic stainless steels ; Grain size ; grain sizes ; Heat treating ; high-Mn austenitic steels ; Hot rolling ; Impact strength ; Mechanical properties ; Mechanical twinning ; Microstructure ; nanoscale mechanical twins ; Strain hardening ; Tensile deformation ; Toughness ; Ultimate tensile strength ; Yield strength</subject><ispartof>Steel research international, 2020-07, Vol.91 (7), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3540-15e594992ca71757be28d985d1735f92f3260fedcf5bc12bcebbb9962a628bb43</citedby><cites>FETCH-LOGICAL-c3540-15e594992ca71757be28d985d1735f92f3260fedcf5bc12bcebbb9962a628bb43</cites><orcidid>0000-0001-6028-3792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.201900660$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.201900660$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><creatorcontrib>Cai, Zhihui</creatorcontrib><creatorcontrib>Ding, Hua</creatorcontrib><creatorcontrib>Pan, Mingming</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Liu, Yuwei</creatorcontrib><title>Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications</title><title>Steel research international</title><description>The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile strength (UTS). Mechanical twinning is found to be less active in fine‐grained specimen, leading to the decrease in uniform and total elongations and impact toughness. The existence of dislocations and nanoscale mechanical twins in the initial microstructure contributes to the high YS, and the active mechanical twinning during deformation maintains excellent ductility and impact toughness. The thick twins (generally thicker than 300 nm and formed during hot rolling) play a supplementary role in increasing the instantaneous strain hardening during the late stage of tensile deformation. The yield strength (YS) and ultimate tensile strength (UTS) increase with the decrease in grain size. The uniform and total elongations and impact toughness decrease with the decrease in grain size. The existence of dislocations and mechanical twins results in a high YS. The thick twins increase the instantaneous strain hardening during the late stage of tensile deformation.</description><subject>Austenitic stainless steels</subject><subject>Grain size</subject><subject>grain sizes</subject><subject>Heat treating</subject><subject>high-Mn austenitic steels</subject><subject>Hot rolling</subject><subject>Impact strength</subject><subject>Mechanical properties</subject><subject>Mechanical twinning</subject><subject>Microstructure</subject><subject>nanoscale mechanical twins</subject><subject>Strain hardening</subject><subject>Tensile deformation</subject><subject>Toughness</subject><subject>Ultimate tensile strength</subject><subject>Yield strength</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxSMEEqiwMltiTvGfxInHqgJaqQVEQWKLHPfcGgU72I5QN1Y2PiOfhJQiGLnlTqf3e6d7SXJK8JBgTM-DN3ZIMREYc473kiNScpGyLHvc72dOSMp4yQ6TkxCecF-sLHmRHSXvF1qDigE5je5c0xi7Qvfw3IKXsfOAnEVxDWhulHch-k59b6VdojmotbRGyQbdetcD0cC3jUQTs1p_vn3MLRp1IYI10Si0iAAN0s6jsd-4Vb9VaNS2Te8QjbPhODnQsglw8tMHycPlxf14ks5urqbj0SxVLM9wSnLIRSYEVbIgRV7UQMulKPMlKViuBdWMcqxhqXReK0JrBXVdC8Gp5LSs64wNkrOdb-vdSwchVk-u87Y_WdGMCM6owGWvGu5U27-DB1213jxLv6kIrraJV9vEq9_Ee0DsgFfTwOYfdbW4m17_sV-Mv4hH</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Chen, Yong</creator><creator>Zhang, Xiaoming</creator><creator>Cai, Zhihui</creator><creator>Ding, Hua</creator><creator>Pan, Mingming</creator><creator>Wei, Wei</creator><creator>Liu, Yuwei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6028-3792</orcidid></search><sort><creationdate>202007</creationdate><title>Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications</title><author>Chen, Yong ; Zhang, Xiaoming ; Cai, Zhihui ; Ding, Hua ; Pan, Mingming ; Wei, Wei ; Liu, Yuwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3540-15e594992ca71757be28d985d1735f92f3260fedcf5bc12bcebbb9962a628bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Grain size</topic><topic>grain sizes</topic><topic>Heat treating</topic><topic>high-Mn austenitic steels</topic><topic>Hot rolling</topic><topic>Impact strength</topic><topic>Mechanical properties</topic><topic>Mechanical twinning</topic><topic>Microstructure</topic><topic>nanoscale mechanical twins</topic><topic>Strain hardening</topic><topic>Tensile deformation</topic><topic>Toughness</topic><topic>Ultimate tensile strength</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><creatorcontrib>Cai, Zhihui</creatorcontrib><creatorcontrib>Ding, Hua</creatorcontrib><creatorcontrib>Pan, Mingming</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Liu, Yuwei</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yong</au><au>Zhang, Xiaoming</au><au>Cai, Zhihui</au><au>Ding, Hua</au><au>Pan, Mingming</au><au>Wei, Wei</au><au>Liu, Yuwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications</atitle><jtitle>Steel research international</jtitle><date>2020-07</date><risdate>2020</risdate><volume>91</volume><issue>7</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>The effects of rolling temperature on the microstructure and mechanical properties of a high‐Mn austenitic steel is investigated. It is observed that the grain size decreases with the decrease in rolling temperature, resulting in an increase in yield strength (YS) and an increase in ultimate tensile strength (UTS). Mechanical twinning is found to be less active in fine‐grained specimen, leading to the decrease in uniform and total elongations and impact toughness. The existence of dislocations and nanoscale mechanical twins in the initial microstructure contributes to the high YS, and the active mechanical twinning during deformation maintains excellent ductility and impact toughness. The thick twins (generally thicker than 300 nm and formed during hot rolling) play a supplementary role in increasing the instantaneous strain hardening during the late stage of tensile deformation. The yield strength (YS) and ultimate tensile strength (UTS) increase with the decrease in grain size. The uniform and total elongations and impact toughness decrease with the decrease in grain size. The existence of dislocations and mechanical twins results in a high YS. The thick twins increase the instantaneous strain hardening during the late stage of tensile deformation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.201900660</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6028-3792</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1611-3683
ispartof Steel research international, 2020-07, Vol.91 (7), p.n/a
issn 1611-3683
1869-344X
language eng
recordid cdi_proquest_journals_2419632908
source Access via Wiley Online Library
subjects Austenitic stainless steels
Grain size
grain sizes
Heat treating
high-Mn austenitic steels
Hot rolling
Impact strength
Mechanical properties
Mechanical twinning
Microstructure
nanoscale mechanical twins
Strain hardening
Tensile deformation
Toughness
Ultimate tensile strength
Yield strength
title Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Rolling%20Temperature%20on%20the%20Microstructure%20and%20Mechanical%20Properties%20of%20a%20High%E2%80%90Mn%20Austenitic%20Steel%20for%20Cryogenic%20Applications&rft.jtitle=Steel%20research%20international&rft.au=Chen,%20Yong&rft.date=2020-07&rft.volume=91&rft.issue=7&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.201900660&rft_dat=%3Cproquest_cross%3E2419632908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419632908&rft_id=info:pmid/&rfr_iscdi=true