Homotopy theory with marked additive categories

We construct combinatorial model category structures on the categories of (marked) categories and (marked) preadditive categories, and we characterize (marked) additive categories as fibrant objects in a Bousfield localization of preadditive categories. These model category structures are used to pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and applications of categories 2020-01, Vol.35 (27), p.371
Hauptverfasser: Bunke, Ulrich, Engel, Alexander, Kasprowski, Daniel, Winges, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct combinatorial model category structures on the categories of (marked) categories and (marked) preadditive categories, and we characterize (marked) additive categories as fibrant objects in a Bousfield localization of preadditive categories. These model category structures are used to present the corresponding infinity-categories obtained by inverting equivalences. We apply these results to explicitly calculate limits and colimits in these infinity-categories. The motivating application is a systematic construction of the equivariant coarse algebraic K-homology with coefficients in an additive category from its non-equivariant version.
ISSN:1201-561X