Gorenstein flat representations of left rooted quivers
We study Gorenstein flat objects in the category \({\sf Rep}(Q,R)\) of representations of a left rooted quiver \(Q\) with values in \({\sf Mod}(R)\), the category of all left \(R\)-modules, where \(R\) is an arbitrary associative ring. We show that a representation \(X\) in \({\sf Rep}(Q,R)\) is Gor...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Gorenstein flat objects in the category \({\sf Rep}(Q,R)\) of representations of a left rooted quiver \(Q\) with values in \({\sf Mod}(R)\), the category of all left \(R\)-modules, where \(R\) is an arbitrary associative ring. We show that a representation \(X\) in \({\sf Rep}(Q,R)\) is Gorenstein flat if and only if for each vertex \(i\) the canonical homomorphism \(\varphi_i^X: \oplus_{a:j\to i}X(j)\to X(i)\) is injective, and the left \(R\)-modules \(X(i)\) and \({\rm Coker}\varphi_i^X\) are Gorenstein flat. As an application of this result, we show that there is a hereditary abelian model structure on \({\sf Rep}(Q,R)\) whose cofibrant objects are precisely the Gorenstein flat representations, fibrant objects are precisely the cotorsion representations, and trivial objects are precisely the representations with values in the right orthogonal category of all projectively coresolved Gorenstein flat left \(R\)-modules. |
---|---|
ISSN: | 2331-8422 |