Bases of minimal vectors in tame lattices

Motivated by the behavior of the trace pairing over tame cyclic number fields, we introduce the notion of tame lattices. Given an arbitrary non-trivial lattice \(\mathcal{L}\) we construct a parametric family of full-rank sub-lattices \(\{\mathcal{L}_{\alpha}\}\) of \(\mathcal{L}\) such that wheneve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Mohamed Taoufiq Damir, Mantilla-Soler, Guillermo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the behavior of the trace pairing over tame cyclic number fields, we introduce the notion of tame lattices. Given an arbitrary non-trivial lattice \(\mathcal{L}\) we construct a parametric family of full-rank sub-lattices \(\{\mathcal{L}_{\alpha}\}\) of \(\mathcal{L}\) such that whenever \(\mathcal{L}\) is tame each \(\mathcal{L}_{\alpha}\) has a basis of minimal vectors. Furthermore, for each \(\mathcal{L}_{\alpha}\) in the family a basis of minimal vectors is explicitly constructed.
ISSN:2331-8422