Bases of minimal vectors in tame lattices
Motivated by the behavior of the trace pairing over tame cyclic number fields, we introduce the notion of tame lattices. Given an arbitrary non-trivial lattice \(\mathcal{L}\) we construct a parametric family of full-rank sub-lattices \(\{\mathcal{L}_{\alpha}\}\) of \(\mathcal{L}\) such that wheneve...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by the behavior of the trace pairing over tame cyclic number fields, we introduce the notion of tame lattices. Given an arbitrary non-trivial lattice \(\mathcal{L}\) we construct a parametric family of full-rank sub-lattices \(\{\mathcal{L}_{\alpha}\}\) of \(\mathcal{L}\) such that whenever \(\mathcal{L}\) is tame each \(\mathcal{L}_{\alpha}\) has a basis of minimal vectors. Furthermore, for each \(\mathcal{L}_{\alpha}\) in the family a basis of minimal vectors is explicitly constructed. |
---|---|
ISSN: | 2331-8422 |