ECG Classification Using Deep CNN Improved by Wavelet Transform

Atrial fibrillation is the most common persistent form of arrhythmia. A method based on wavelet transform combined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2020-01, Vol.64 (3), p.1615-1628
Hauptverfasser: Zhao, Yunxiang, Cheng, Jinyong, Zhan, Ping, Peng, Xueping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1628
container_issue 3
container_start_page 1615
container_title Computers, materials & continua
container_volume 64
creator Zhao, Yunxiang
Cheng, Jinyong
Zhan, Ping
Peng, Xueping
description Atrial fibrillation is the most common persistent form of arrhythmia. A method based on wavelet transform combined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds of subsignals with different frequency scales by wavelet function, and then wavelet reconstruction is carried out after segmented filtering to eliminate the influence of noise. A 24-layer convolution neural network is used to extract the hierarchical features by convolution kernels of different sizes, and finally the softmax classifier is used to classify them. This paper applies this method of the ECG data set provided by the 2017 PhysioNet/CINC challenge. After cross validation, this method can obtain 87.1% accuracy and the F1 score is 86.46%. Compared with the existing classification method, our proposed algorithm has higher accuracy and generalization ability for ECG signal data classification.
doi_str_mv 10.32604/cmc.2020.09938
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419203428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419203428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-fe665db703f49af19f9824391332b01c20a88d5d2e5b05b41a7862ea38f42fa33</originalsourceid><addsrcrecordid>eNpNkDFPwzAUhC0EEqUws1piTvr87Lj2hFAopVJVllaMlpPYKFWTFDut1H9PaBmY7obT3ekj5JFBylGCmJRNmSIgpKA1V1dkxDIhE0SU1__8LbmLcQvAJdcwIs-zfE7znY2x9nVp-7pr6SbW7Rd9dW5P89WKLpp96I6uosWJftqj27meroNto-9Cc09uvN1F9_CnY7J5m63z92T5MV_kL8uk5Az6xDsps6qYAvdCW8-01woF14xzLICVCFapKqvQZQVkhWB2qiQ6y5UX6C3nY_J06R2-fB9c7M22O4R2mDQomEbgAtWQmlxSZehiDM6bfagbG06GgTlTMgMl80vJnCnxH70KWHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419203428</pqid></control><display><type>article</type><title>ECG Classification Using Deep CNN Improved by Wavelet Transform</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhao, Yunxiang ; Cheng, Jinyong ; Zhan, Ping ; Peng, Xueping</creator><creatorcontrib>Zhao, Yunxiang ; Cheng, Jinyong ; Zhan, Ping ; Peng, Xueping</creatorcontrib><description>Atrial fibrillation is the most common persistent form of arrhythmia. A method based on wavelet transform combined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds of subsignals with different frequency scales by wavelet function, and then wavelet reconstruction is carried out after segmented filtering to eliminate the influence of noise. A 24-layer convolution neural network is used to extract the hierarchical features by convolution kernels of different sizes, and finally the softmax classifier is used to classify them. This paper applies this method of the ECG data set provided by the 2017 PhysioNet/CINC challenge. After cross validation, this method can obtain 87.1% accuracy and the F1 score is 86.46%. Compared with the existing classification method, our proposed algorithm has higher accuracy and generalization ability for ECG signal data classification.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2020.09938</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Arrhythmia ; Artificial neural networks ; Classification ; Convolution ; Electrocardiography ; Feature extraction ; Fibrillation ; Neural networks ; Signal classification ; Wavelet transforms</subject><ispartof>Computers, materials &amp; continua, 2020-01, Vol.64 (3), p.1615-1628</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-fe665db703f49af19f9824391332b01c20a88d5d2e5b05b41a7862ea38f42fa33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Yunxiang</creatorcontrib><creatorcontrib>Cheng, Jinyong</creatorcontrib><creatorcontrib>Zhan, Ping</creatorcontrib><creatorcontrib>Peng, Xueping</creatorcontrib><title>ECG Classification Using Deep CNN Improved by Wavelet Transform</title><title>Computers, materials &amp; continua</title><description>Atrial fibrillation is the most common persistent form of arrhythmia. A method based on wavelet transform combined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds of subsignals with different frequency scales by wavelet function, and then wavelet reconstruction is carried out after segmented filtering to eliminate the influence of noise. A 24-layer convolution neural network is used to extract the hierarchical features by convolution kernels of different sizes, and finally the softmax classifier is used to classify them. This paper applies this method of the ECG data set provided by the 2017 PhysioNet/CINC challenge. After cross validation, this method can obtain 87.1% accuracy and the F1 score is 86.46%. Compared with the existing classification method, our proposed algorithm has higher accuracy and generalization ability for ECG signal data classification.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Convolution</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Fibrillation</subject><subject>Neural networks</subject><subject>Signal classification</subject><subject>Wavelet transforms</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkDFPwzAUhC0EEqUws1piTvr87Lj2hFAopVJVllaMlpPYKFWTFDut1H9PaBmY7obT3ekj5JFBylGCmJRNmSIgpKA1V1dkxDIhE0SU1__8LbmLcQvAJdcwIs-zfE7znY2x9nVp-7pr6SbW7Rd9dW5P89WKLpp96I6uosWJftqj27meroNto-9Cc09uvN1F9_CnY7J5m63z92T5MV_kL8uk5Az6xDsps6qYAvdCW8-01woF14xzLICVCFapKqvQZQVkhWB2qiQ6y5UX6C3nY_J06R2-fB9c7M22O4R2mDQomEbgAtWQmlxSZehiDM6bfagbG06GgTlTMgMl80vJnCnxH70KWHw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhao, Yunxiang</creator><creator>Cheng, Jinyong</creator><creator>Zhan, Ping</creator><creator>Peng, Xueping</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200101</creationdate><title>ECG Classification Using Deep CNN Improved by Wavelet Transform</title><author>Zhao, Yunxiang ; Cheng, Jinyong ; Zhan, Ping ; Peng, Xueping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-fe665db703f49af19f9824391332b01c20a88d5d2e5b05b41a7862ea38f42fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Convolution</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Fibrillation</topic><topic>Neural networks</topic><topic>Signal classification</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yunxiang</creatorcontrib><creatorcontrib>Cheng, Jinyong</creatorcontrib><creatorcontrib>Zhan, Ping</creatorcontrib><creatorcontrib>Peng, Xueping</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yunxiang</au><au>Cheng, Jinyong</au><au>Zhan, Ping</au><au>Peng, Xueping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECG Classification Using Deep CNN Improved by Wavelet Transform</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>64</volume><issue>3</issue><spage>1615</spage><epage>1628</epage><pages>1615-1628</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Atrial fibrillation is the most common persistent form of arrhythmia. A method based on wavelet transform combined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds of subsignals with different frequency scales by wavelet function, and then wavelet reconstruction is carried out after segmented filtering to eliminate the influence of noise. A 24-layer convolution neural network is used to extract the hierarchical features by convolution kernels of different sizes, and finally the softmax classifier is used to classify them. This paper applies this method of the ECG data set provided by the 2017 PhysioNet/CINC challenge. After cross validation, this method can obtain 87.1% accuracy and the F1 score is 86.46%. Compared with the existing classification method, our proposed algorithm has higher accuracy and generalization ability for ECG signal data classification.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2020.09938</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2226
ispartof Computers, materials & continua, 2020-01, Vol.64 (3), p.1615-1628
issn 1546-2226
1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2419203428
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Arrhythmia
Artificial neural networks
Classification
Convolution
Electrocardiography
Feature extraction
Fibrillation
Neural networks
Signal classification
Wavelet transforms
title ECG Classification Using Deep CNN Improved by Wavelet Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECG%20Classification%20Using%20Deep%20CNN%20Improved%20by%20Wavelet%20Transform&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Zhao,%20Yunxiang&rft.date=2020-01-01&rft.volume=64&rft.issue=3&rft.spage=1615&rft.epage=1628&rft.pages=1615-1628&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2020.09938&rft_dat=%3Cproquest_cross%3E2419203428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419203428&rft_id=info:pmid/&rfr_iscdi=true