ECG Classification Using Deep CNN Improved by Wavelet Transform

Atrial fibrillation is the most common persistent form of arrhythmia. A method based on wavelet transform combined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2020-01, Vol.64 (3), p.1615-1628
Hauptverfasser: Zhao, Yunxiang, Cheng, Jinyong, Zhan, Ping, Peng, Xueping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atrial fibrillation is the most common persistent form of arrhythmia. A method based on wavelet transform combined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds of subsignals with different frequency scales by wavelet function, and then wavelet reconstruction is carried out after segmented filtering to eliminate the influence of noise. A 24-layer convolution neural network is used to extract the hierarchical features by convolution kernels of different sizes, and finally the softmax classifier is used to classify them. This paper applies this method of the ECG data set provided by the 2017 PhysioNet/CINC challenge. After cross validation, this method can obtain 87.1% accuracy and the F1 score is 86.46%. Compared with the existing classification method, our proposed algorithm has higher accuracy and generalization ability for ECG signal data classification.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2020.09938