Geometric phases for finite-dimensional systems—The roles of Bargmann invariants, null phase curves, and the Schwinger–Majorana SU(2) framework

We present a study of the properties of Bargmann Invariants (BIs) and Null Phase Curves (NPCs) in the theory of the geometric phase for finite dimensional systems. A recent suggestion to exploit the Majorana theorem on symmetric SU(2) multispinors is combined with the Schwinger oscillator operator c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2020-07, Vol.61 (7)
Hauptverfasser: Akhilesh, K. S., Arvind, Chaturvedi, S., Mallesh, K. S., Mukunda, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a study of the properties of Bargmann Invariants (BIs) and Null Phase Curves (NPCs) in the theory of the geometric phase for finite dimensional systems. A recent suggestion to exploit the Majorana theorem on symmetric SU(2) multispinors is combined with the Schwinger oscillator operator construction to develop efficient operator-based methods to handle these problems. The BI is described using intrinsic unitary invariant angle parameters whose algebraic properties as functions of Hilbert space dimension are analyzed using elegant group theoretic methods. The BI-geometric phase connection, extended by the use of NPCs, is explored in detail, and interesting new experiments in this subject are pointed out.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5124865