Photocatalytic degradation and heat reflectance recovery of waterborne acrylic polymer/ZnO nanocomposite coating

This work aims to clarify the photocatalytic degradation mechanism and heat reflectance recovery performance of waterborne acrylic polymer/ZnO nanocomposite coating. To fabricate the nanocomposite coating, ZnO nanoparticles (nano‐ZnO) were dispersed into acrylic polymer matrix at the various concent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2020-10, Vol.137 (37), p.n/a
Hauptverfasser: Nguyen, Thien Vuong, Dao, Phi Hung, Nguyen, Tuan Anh, Dang, Viet Hung, Ha, Minh Nguyet, Nguyen, Thi Thuy Trang, Vu, Quoc Trung, Nguyen, Ngọc Linh, Dang, Tran Chien, Nguyen‐Tri, Phuong, Tran, Dai Lam, Lu, Le Trong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work aims to clarify the photocatalytic degradation mechanism and heat reflectance recovery performance of waterborne acrylic polymer/ZnO nanocomposite coating. To fabricate the nanocomposite coating, ZnO nanoparticles (nano‐ZnO) were dispersed into acrylic polymer matrix at the various concentrations from 1 to 6% (by total weight of resin solids). The photocatalytic degradation of nanocomposite coating under ultraviolet (UV) light irradiation has been investigated by monitoring its weight loss and chemical/microstructural/morphological changes. As the topcoat layer, its heat reflectance recovery has been evaluated under UV/condensation exposure by using an artificial dirty mixture of 85 wt% nanoclay, 10 wt% silica particles (1–5 μm), 1 wt% carbon black, and 2 wt% engine oil. After 108‐cycle UV/condensation exposure, infrared spectra and weight loss analysis indicated that the maximal degradation for nanocomposite coating is observed at 1 wt% nano‐ZnO. On the other hand, after 96 hr of UV light exposure, the nanocomposite coating with1 wt% nano‐ZnO could restore effectively the reflective index of solar‐heat reflectance coating (from 58.45 to 80.78%). Finally, the photodegradation mechanism of this waterborne acrylic polymer coating has been proposed as the UV‐induced formation of CCCO conjugated double bonds. As a result, its self‐cleaning phenomenon can be achieved as the recovery of heat reflectance.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.49116