On the Accuracy of Bicompact Schemes as Applied to Computation of Unsteady Shock Waves
Bicompact schemes that have the fourth order of classical approximation in space and a higher order (at least the second) in time are considered. Their accuracy is studied as applied to a quasilinear hyperbolic system of conservation laws with discontinuous solutions involving shock waves with varia...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2020-05, Vol.60 (5), p.864-878 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bicompact schemes that have the fourth order of classical approximation in space and a higher order (at least the second) in time are considered. Their accuracy is studied as applied to a quasilinear hyperbolic system of conservation laws with discontinuous solutions involving shock waves with variable propagation velocities. The shallow water equations are used as an example of such a system. It is shown that a nonmonotone bicompact scheme has a higher order of convergence in domains of influence of unsteady shock waves. If spurious oscillations are suppressed by applying a conservative limiting procedure, then the bicompact scheme, though being high-order accurate on smooth solutions, has a reduced (first) order of convergence in the domains of influence of shock waves. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542520050061 |