Woven Fabric Pattern Recognition and Classification Based on Deep Convolutional Neural Networks

The weave pattern (texture) of woven fabric is considered to be an important factor of the design and production of high-quality fabric. Traditionally, the recognition of woven fabric has a lot of challenges due to its manual visual inspection. Moreover, the approaches based on early machine learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-06, Vol.9 (6), p.1048
Hauptverfasser: Iqbal Hussain, Muhammad Ather, Khan, Babar, Wang, Zhijie, Ding, Shenyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The weave pattern (texture) of woven fabric is considered to be an important factor of the design and production of high-quality fabric. Traditionally, the recognition of woven fabric has a lot of challenges due to its manual visual inspection. Moreover, the approaches based on early machine learning algorithms directly depend on handcrafted features, which are time-consuming and error-prone processes. Hence, an automated system is needed for classification of woven fabric to improve productivity. In this paper, we propose a deep learning model based on data augmentation and transfer learning approach for the classification and recognition of woven fabrics. The model uses the residual network (ResNet), where the fabric texture features are extracted and classified automatically in an end-to-end fashion. We evaluated the results of our model using evaluation metrics such as accuracy, balanced accuracy, and F1-score. The experimental results show that the proposed model is robust and achieves state-of-the-art accuracy even when the physical properties of the fabric are changed. We compared our results with other baseline approaches and a pretrained VGGNet deep learning model which showed that the proposed method achieved higher accuracy when rotational orientations in fabric and proper lighting effects were considered.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9061048