Tuning lightweight, flexible, self-cleaning bio-inspired core–shell structure of nanofiber films for high-performance electromagnetic interference shielding
With the significant advances in electronic products, materials with good flexibility, corrosion resistance, high electrical conductivity and minimal thickness are urgently needed. Herein, we demonstrate the biomimetic core–shell structure of lightweight, flexible, self-cleaning nanofiber films for...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020-09, Vol.55 (27), p.13008-13022 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the significant advances in electronic products, materials with good flexibility, corrosion resistance, high electrical conductivity and minimal thickness are urgently needed. Herein, we demonstrate the biomimetic core–shell structure of lightweight, flexible, self-cleaning nanofiber films for high-performance electromagnetic interference (EMI) shielding by tuning the deposition of Ag nanoparticles (AgNPs). With a thickness of 0.06 mm, PAN@TiO
2
@AgNPs composite films (PTA films) exhibit an average EMI shielding effectiveness (SE) of 82.60 dB. After further processing with fluorine-containing molecules, the PTA-4 film becomes superhydrophobic and anticorrosive. After a hydrophobic treatment, composite films have average SE, specific SE (SSE) and SSE/t being 79.57 dB, 360.86 dB cm
3
g
−1
, and 60143.33 dB cm
2
g
−1
, respectively. In particular, conductive films that undergo UV radiation and bending cycles retain a stabilized electrical conductivity. This tuning bio-inspired fabrication method provides the films with UV-resistance, superhydrophobicity and EMI SE that fit the practical applications of wearable and flexible sensors. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-020-04941-8 |