Multimodal Intelligence: Representation Learning, Information Fusion, and Applications

Deep learning methods haverevolutionized speech recognition, image recognition, and natural language processing since 2010. Each of these tasks involves a single modality in their input signals. However, many applications in the artificial intelligence field involve multiple modalities. Therefore, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2020-03, Vol.14 (3), p.478-493
Hauptverfasser: Zhang, Chao, Yang, Zichao, He, Xiaodong, Deng, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning methods haverevolutionized speech recognition, image recognition, and natural language processing since 2010. Each of these tasks involves a single modality in their input signals. However, many applications in the artificial intelligence field involve multiple modalities. Therefore, it is of broad interest to study the more difficult and complex problem of modeling and learning across multiple modalities. In this paper, we provide a technical review of available models and learning methods for multimodal intelligence. The main focus of this review is the combination of vision and natural language modalities, which has become an important topic in both the computer vision and natural language processing research communities. This review provides a comprehensive analysis of recent works on multimodal deep learning from three perspectives: learning multimodal representations, fusing multimodal signals at various levels, and multimodal applications. Regarding multimodal representation learning, we review the key concepts of embedding, which unify multimodal signals into a single vector space and thereby enable cross-modality signal processing. We also review the properties of many types of embeddings that are constructed and learned for general downstream tasks. Regarding multimodal fusion, this review focuses on special architectures for the integration of representations of unimodal signals for a particular task. Regarding applications, selected areas of a broad interest in the current literature are covered, including image-to-text caption generation, text-to-image generation, and visual question answering. We believe that this review will facilitate future studies in the emerging field of multimodal intelligence for related communities.
ISSN:1932-4553
1941-0484
DOI:10.1109/JSTSP.2020.2987728