Study of Urban Greenery Models to Prevent Overheating of Parked Vehicles in P + R Facilities in Ljubljana, Slovenia

Parking in park-and-ride (P + R) facilities on the outskirts of a city reduces the traffic inside the cities and follows the principles of sustainable mobility. However, large paved (asphalt) surfaces create urban heat islands (UHI). This causes the temperature to rise in vehicles during full-day pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2020-06, Vol.12 (12), p.5160
Hauptverfasser: Fikfak, Alenka, Lavtižar, Kristijan, Grom, Janez Peter, Kosanović, Saja, Zbašnik-Senegačnik, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parking in park-and-ride (P + R) facilities on the outskirts of a city reduces the traffic inside the cities and follows the principles of sustainable mobility. However, large paved (asphalt) surfaces create urban heat islands (UHI). This causes the temperature to rise in vehicles during full-day parking, which has a negative effect on comfort level and driving performance. This study was conceptualized as two-stage research. The first (preliminary) stage dealt with the measurement and analysis of temperature data at two nearby open parking lots in the city of Ljubljana, one of which was the main research spatial area, P + R Barje (L1), and Trnovo parking (L2), which was used for comparison in the first-stage research. In the preliminary research, we underlined the problem of long-term parking in parking areas exposed to heatwaves (HW). The second stage involved the studying of greening schemes in P + R facilities, which would allow for optimal shading during parking. Advanced 3D and 4D models using ENVI-met and LEONARDO software were developed, which assessed the parking surfaces and the areas of optimum outdoor comfort. Shading by greenery was adopted in this paper, as the strategy aimed at improving the conditions by modelling different variants of greening the parking lot L1.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12125160