Ricci flow on surfaces of revolution: an extrinsic view
A Ricci flow ( M , g ( t )) on an n -dimensional Riemannian manifold M is an intrinsic geometric flow. A family of smoothly embedded submanifolds ( S ( t ) , g E ) of a fixed Euclidean space E = R n + k is called an extrinsic representation in R n + k of ( M , g ( t )) if there exists a smooth one...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2020-08, Vol.207 (1), p.81-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Ricci flow (
M
,
g
(
t
)) on an
n
-dimensional Riemannian manifold
M
is an intrinsic geometric flow. A family of smoothly embedded submanifolds
(
S
(
t
)
,
g
E
)
of a fixed Euclidean space
E
=
R
n
+
k
is called an extrinsic representation in
R
n
+
k
of (
M
,
g
(
t
)) if there exists a smooth one-parameter family of isometries
(
S
(
t
)
,
g
E
)
→
(
M
,
g
(
t
)
)
. When does such a representation exist? We formulate a new way of framing this question for Ricci flows on surfaces of revolution immersed in
R
3
. This framework allows us to construct extrinsic representations for the Ricci flow initialized by any compact surface of revolution immersed in
R
3
. In particular, we exhibit the first explicit extrinsic representations in
R
4
of the Ricci flows initialized by toroidal surfaces of revolution immersed in
R
3
. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-019-00488-4 |