Modeling soil erosion after mechanized logging operations on steep terrain in the Northern Black Forest, Germany

Climate change makes it necessary to re-evaluate the erosion potential of forest infrastructure. We used the Forest Service WEPP interfaces (FS WEPP) to compare soil erosion potentials of two competing logging practices in steep terrain in the Northern Black Forest, Germany: (1) Felling with harvest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of forest research 2020-08, Vol.139 (4), p.549-565
Hauptverfasser: Haas, Julian, Schack-Kirchner, Helmer, Lang, Friederike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change makes it necessary to re-evaluate the erosion potential of forest infrastructure. We used the Forest Service WEPP interfaces (FS WEPP) to compare soil erosion potentials of two competing logging practices in steep terrain in the Northern Black Forest, Germany: (1) Felling with harvesters and logging with forwarders in slope line with optional traction supporting winches. (2) Felling by chainsaw, logging with a cable winch, and further transport of logs via forest dirt roads. After forest harvest we measured erosion, runoff, and DOC concentration in runoff from 50 m sections of two machine tracks, two cable tracks, and a dirt road for 2 years. The erosion measurements were used to validate FS WEPP management options and a regionally adjusted CLIGEN input file. With these parameterizations we compared the erosion potential of the two practices on subcatchment scale by modeling return periods and total sediment export with FS WEPP. Model results show that logging operations with heavy machinery in slope line are less prone to soil erosion than logging operations including winch logging and additional dirt roads. The former produces less sediment in its worst-case configuration than the latter in its most moderate configuration by a factor of two. Model results also show that erosion prevention benefits from long periods of 10 years between two harvests.
ISSN:1612-4669
1612-4677
DOI:10.1007/s10342-020-01269-5