Shape design optimization of interdigitated electrodes for maximal electro-adhesion forces
We present a shape design optimization method for interdigitated electrodes in an electro-adhesive device. In the finite element analysis of electrostatics using linear basis functions, a finite node displacement method is used for the accurate electro-adhesive force by integrating the electric fiel...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2020-05, Vol.61 (5), p.1843-1855 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a shape design optimization method for interdigitated electrodes in an electro-adhesive device. In the finite element analysis of electrostatics using linear basis functions, a finite node displacement method is used for the accurate electro-adhesive force by integrating the electric field along the boundary surface. The floating potential boundary for conductive objects is handled by a charge conservation law in the electrostatic analysis as well as the shape design sensitivity analysis. In numerical examples, the structural shape of interdigitated electrodes is optimized to maximize the electro-adhesion force per unit area for both conductive and non-conductive objects. It turns out that the electro-adhesive force is mainly induced by an electrostatic induction for conductive objects and by an electric polarization for non-conductive ones. There is an optimal ratio of electrode width and air gap thickness for non-conductive objects but no limit for conductive objects. |
---|---|
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-020-02576-6 |