The Effect of Heat Induction on Shear Strength of Soft Soil in Radial Zone

The main problem in infrastructure development at the soft clay was its bearing capacity therefore it needs to be improved. In this research, the improvement method was carried out by modeling in small scale of preloading and heat induction combination. Location of soft clay sampling was in Takalar,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2020-06, Vol.998, p.329-334
Hauptverfasser: Harianto, Tri, Muhiddin, Achmad Bakri, Panjaitan, Maraden, Samang, Lawalenna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main problem in infrastructure development at the soft clay was its bearing capacity therefore it needs to be improved. In this research, the improvement method was carried out by modeling in small scale of preloading and heat induction combination. Location of soft clay sampling was in Takalar, Indonesia. The purpose of this study was to investigate the change of the shear strength of soft soil corresponding with heat induction at the radial zone. The shear strength was obtained by vane shear test and compressive strength from unconfined compressive test (UCT). The heat applied ranging from 100o C, 200o C, 300o C, and 400o C with static preloading load 0.20 kg/cm2. The strengths of the soil in radial zones have been tested at R0, R1, and R2. At lowest temperature 100° at R0 the compressive strength was 0.203 kg/cm2, at highest temperature 400° at R0 the compressive strength 0.467 kg/cm2, there was a significant increasing of compressive strength value with the change of temperature. At the highest temperature 4000 the shear strength from vane shear tests resulting at R0 0.240 kg/cm2, R1 of 0.128 kg/cm2, R2 of 0.077 kg/cm2. At the lowest temperature of 100o C shows R0 at 0.116 kg/cm2, R1 at 0.070 kg/cm2, R3 of 0.046 kg/cm2. The results show a tendency of declining strength value as the soil farther away from center of heat induction. The experimental result from this model produces strength that can be used as a parameter of the foundation model on soft soil.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.998.329