Isoptic Curves of Generalized Conic Sections in the Hyperbolic Plane

We recall the notion of generalized hyperbolic angle between proper and improper straight lines, which is only available in Hungarian and Esperanto. Then we summarize the generalized hyperbolic conic sections. After the investigation of real conic sections and their isoptic curves in the hyperbolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2020-05, Vol.71 (12), p.1929-1944
Hauptverfasser: Csima, G., Szirmai, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recall the notion of generalized hyperbolic angle between proper and improper straight lines, which is only available in Hungarian and Esperanto. Then we summarize the generalized hyperbolic conic sections. After the investigation of real conic sections and their isoptic curves in the hyperbolic plane H 2 , we consider the problem of isoptic curves of generalized conic sections in the extended hyperbolic plane. This problem is widely investigated in the Euclidean plane E 2 but, in the hyperbolic and elliptic planes, there are few results. Furthermore, we determine and visualize the generalized isoptic curves to all hyperbolic conic sections. For our computations, we use the classical models based on the projective interpretation of hyperbolic geometry. In this way, the isoptic curves can be visualized in the Euclidean screen of a computer.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-020-01756-3