Estimates of Willow (Salix Spp.) Canopy Volume using Unmanned Aerial Systems
Management of livestock grazing in riparian areas is an important aspect of rangeland management. Willows (Salix spp.) are a common riparian plant serving as an ecosystem stabilizer, as well as providing important habitat, but browsing or trampling by cattle can decrease willow canopy volume. Canopy...
Gespeichert in:
Veröffentlicht in: | Rangeland ecology & management 2020-07, Vol.73 (4), p.531-537 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Management of livestock grazing in riparian areas is an important aspect of rangeland management. Willows (Salix spp.) are a common riparian plant serving as an ecosystem stabilizer, as well as providing important habitat, but browsing or trampling by cattle can decrease willow canopy volume. Canopy volume can be measured on the ground with hours of meticulous data collection. However, canopy volume estimates from drone-collected images could be a more efficient and objective method for measuring willow canopy volume and understanding the impact of livestock use on riparian woody vegetation. Our objective was to determine how well drone-based measurements of willow canopy volume corresponded to field measurements in a southern Idaho riparian area before and after a grazing trial. We used sets of overlapping aerial images from a DJI Phantom 4 Professional drone to construct 3-dimensional point clouds of willows. From these point clouds we estimated willow canopy volume using 2 techniques and compared those with canopy volume estimates from field measurements of 58 willows ranging in height from 0.76 m to 4.57 m. Point cloud canopy volume estimates using both techniques showed high correspondence with field-estimated volume (R2> 0.8) for both pregrazing and postgrazing. However, point cloud techniques generally underestimated canopy volume compared with the field technique. Drone-based estimates took ≈4 h per sampling event (i.e., pregrazing, postgrazing) including acquiring and processing the imagery, whereas field-based measurements took ≈10 h per sampling event. These results demonstrate drone-collected images may be an effective tool for measuring and monitoring riparian woody vegetation. |
---|---|
ISSN: | 1550-7424 1551-5028 |
DOI: | 10.1016/j.rama.2020.03.001 |