Domain-centric database to uncover structure of minimally characterized viral genomes

Protein domain-based approaches to analyzing sequence data are valuable tools for examining and exploring genomic architecture across genomes of different organisms. Here, we present a complete dataset of domains from the publicly available sequence data of 9,051 reference viral genomes. The data pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2020-06, Vol.7 (1), p.202-202, Article 202
Hauptverfasser: Bramley, John C., Yenkin, Alex L., Zaydman, Mark A., DiAntonio, Aaron, Milbrandt, Jeffrey D., Buchser, William J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein domain-based approaches to analyzing sequence data are valuable tools for examining and exploring genomic architecture across genomes of different organisms. Here, we present a complete dataset of domains from the publicly available sequence data of 9,051 reference viral genomes. The data provided contain information such as sequence position and neighboring domains from 30,947 pHMM-identified domains from each reference viral genome. Domains were identified from viral whole-genome sequence using automated profile Hidden Markov Models (pHMM). This study also describes the framework for constructing “domain neighborhoods”, as well as the dataset representing it. These data can be used to examine shared and differing domain architectures across viral genomes, to elucidate potential functional properties of genes, and potentially to classify viruses. Measurement(s) Protein Domain • RNA viral genome • DNA viral genome • protein domain neighborhoods • protein domain cluster Technology Type(s) digital curation • bioinformatics method • Cluster Analysis Factor Type(s) Viral Genome Sample Characteristic - Organism Viruses Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12319631
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-020-0536-1