Photosensitized reactive chlorine species-mediated therapeutic destruction of drug-resistant bacteria using plasmonic core-shell Ag@AgCl nanocubes as an external nanomedicine

Due to the rapid growth of drug-resistant bacterial infections, there is an urgent need to develop innovative antimicrobial strategies to conquer the bacterial antibiotic resistance problems. Although a few nanomaterial-based antimicrobial strategies have been developed, the sensitized formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-06, Vol.12 (24), p.1297-12984
Hauptverfasser: Thangudu, Suresh, Kulkarni, Sagar Sunil, Vankayala, Raviraj, Chiang, Chi-Shiun, Hwang, Kuo Chu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the rapid growth of drug-resistant bacterial infections, there is an urgent need to develop innovative antimicrobial strategies to conquer the bacterial antibiotic resistance problems. Although a few nanomaterial-based antimicrobial strategies have been developed, the sensitized formation of cytotoxic reactive chlorine species (RCS), including chlorine gas and chlorine free radicals, by photo-activatable plasmonic nanoparticles for evading drug-resistant bacterial infections has not yet been reported. To address this challenge, herein, we report the synthesis of an unprecedented plasmonic core-shell Ag@AgCl nanocrystal through an in situ oxidation route for the photo-induced generation of highly cytotoxic RCS. We present the detailed in vitro and in vivo investigations of visible light activated Ag@AgCl nanostructure-mediated evasion of drug-resistant bacteria. In particular, the in vivo results demonstrate the complete reepithelialization of the methicillin-resistant Staphylococcus aureus (MRSA) infected wounds on skin upon phototherapeutic treatment mediated Ag@AgCl NCs. To the best of our knowledge, this is the first unique example of using Ag@AgCl NCs as an external nanomedicine for photo-induced generation of RCS to mediate effective killing of both Gram-positive and Gram-negative drug resistance bacteria and healing of the subcutaneous abscesses in an in vivo mouse model. Due to the rapid growth of drug-resistant bacterial infections, there is an urgent need to develop innovative antimicrobial strategies to conquer the bacterial antibiotic resistance problems.
ISSN:2040-3364
2040-3372
DOI:10.1039/d0nr01300e