Cooperative Switching in Large‐Area Assemblies of Magnetic Janus Particles

Magnetic Janus particles (MJPs) have received considerable attention for their rich assembly behavior and their potential technological role in applications ranging from simple magnetophoretic displays to smart cloaking devices. However, further progress is hampered by the lack of predictive underst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-06, Vol.30 (26), p.n/a
Hauptverfasser: Hwang, Sangyeul, Nguyen, Trung Dac, Bhaskar, Srijanani, Yoon, Jaewon, Klaiber, Marvin, Lee, Kyung Jin, Glotzer, Sharon C., Lahann, Joerg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic Janus particles (MJPs) have received considerable attention for their rich assembly behavior and their potential technological role in applications ranging from simple magnetophoretic displays to smart cloaking devices. However, further progress is hampered by the lack of predictive understanding of the cooperative self‐assembly behavior of MJPs and appropriate dynamic control mechanisms. In this paper, a detailed experimental and theoretical investigation into the magnetically directed spatiotemporal self‐assembly and switching of MJPs is presented. For this purpose, a novel type of MJPs with defined hemispherical compartments carrying superparamagnetic iron oxide nanoparticles as well as a novel simulation model to describe their cooperative switching behavior is established. Combination of the theoretical and experimental work culminates in a simple method to direct assemblies of MJPs, even at high particle concentrations. In addition, a magnetophoretic display with switchable MJPs is developed on the basis of the theoretical findings to demonstrate the potential usefulness of controlled large‐area assemblies of magnetic Janus particles. Anisotropic particles that have one hemisphere selectively loaded with magnetite nanoparticles rotate in response to magnetic fields as indicated by visually observable color changes.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201907865