Accelerated hybrid methods for solving pseudomonotone equilibrium problems
In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method,...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2020-08, Vol.46 (4), Article 58 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advances in computational mathematics |
container_volume | 46 |
creator | Van Hieu, Dang Quy, Pham Kim Hong, La Thi Van Vy, Le |
description | In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method, and the shrinking projection method. The algorithms are designed to work either with or without the prior knowledge of the Lipschitz-type constants of bifunction. Theorems of strong convergence are established under mild conditions. The results in this paper generalize, extend, and improve some known results in the field. Finally, several of numerical experiments are performed to support the obtained theoretical results. |
doi_str_mv | 10.1007/s10444-020-09778-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2416326408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416326408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8596270a0c17a571c3670491b58b75244ad755489eb80ff36839e4b67e498d8d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZZD-PpahVCl70vORj0qYk2XY3EfLvXY3gzdMMzPO-Aw8htwzuGYB6CAw45xRSoGCU0nQ6IwsmVEpNPJzHHZihikl9Sa5COACAkUosyOuqLLFFnw9YJfup8E2VdDjsXRWS2vkkuPaz6XfJMeBYuc71bnA9Jngam7aJ9NglR--KFrtwTS7qvA148zuX5OPp8X29odu355f1akvLjJmBamFkqiCHkqlcKFZmUgE3rBC6UCLlPK-UEFwbLDTUdSZ1ZpAXUiE3utJVtiR3c298fBoxDPbgRt_HlzblTGap5KAjlc5U6V0IHmt79E2X-8kysN_O7OzMRmf2x5mdYiibQyHC_Q79X_U_qS_Re2-Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416326408</pqid></control><display><type>article</type><title>Accelerated hybrid methods for solving pseudomonotone equilibrium problems</title><source>Springer Nature - Complete Springer Journals</source><creator>Van Hieu, Dang ; Quy, Pham Kim ; Hong, La Thi ; Van Vy, Le</creator><creatorcontrib>Van Hieu, Dang ; Quy, Pham Kim ; Hong, La Thi ; Van Vy, Le</creatorcontrib><description>In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method, and the shrinking projection method. The algorithms are designed to work either with or without the prior knowledge of the Lipschitz-type constants of bifunction. Theorems of strong convergence are established under mild conditions. The results in this paper generalize, extend, and improve some known results in the field. Finally, several of numerical experiments are performed to support the obtained theoretical results.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-020-09778-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Equilibrium methods ; Hilbert space ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Visualization</subject><ispartof>Advances in computational mathematics, 2020-08, Vol.46 (4), Article 58</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8596270a0c17a571c3670491b58b75244ad755489eb80ff36839e4b67e498d8d3</citedby><cites>FETCH-LOGICAL-c319t-8596270a0c17a571c3670491b58b75244ad755489eb80ff36839e4b67e498d8d3</cites><orcidid>0000-0002-5195-1637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-020-09778-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-020-09778-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Van Hieu, Dang</creatorcontrib><creatorcontrib>Quy, Pham Kim</creatorcontrib><creatorcontrib>Hong, La Thi</creatorcontrib><creatorcontrib>Van Vy, Le</creatorcontrib><title>Accelerated hybrid methods for solving pseudomonotone equilibrium problems</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method, and the shrinking projection method. The algorithms are designed to work either with or without the prior knowledge of the Lipschitz-type constants of bifunction. Theorems of strong convergence are established under mild conditions. The results in this paper generalize, extend, and improve some known results in the field. Finally, several of numerical experiments are performed to support the obtained theoretical results.</description><subject>Algorithms</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Equilibrium methods</subject><subject>Hilbert space</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZZD-PpahVCl70vORj0qYk2XY3EfLvXY3gzdMMzPO-Aw8htwzuGYB6CAw45xRSoGCU0nQ6IwsmVEpNPJzHHZihikl9Sa5COACAkUosyOuqLLFFnw9YJfup8E2VdDjsXRWS2vkkuPaz6XfJMeBYuc71bnA9Jngam7aJ9NglR--KFrtwTS7qvA148zuX5OPp8X29odu355f1akvLjJmBamFkqiCHkqlcKFZmUgE3rBC6UCLlPK-UEFwbLDTUdSZ1ZpAXUiE3utJVtiR3c298fBoxDPbgRt_HlzblTGap5KAjlc5U6V0IHmt79E2X-8kysN_O7OzMRmf2x5mdYiibQyHC_Q79X_U_qS_Re2-Z</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Van Hieu, Dang</creator><creator>Quy, Pham Kim</creator><creator>Hong, La Thi</creator><creator>Van Vy, Le</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5195-1637</orcidid></search><sort><creationdate>20200801</creationdate><title>Accelerated hybrid methods for solving pseudomonotone equilibrium problems</title><author>Van Hieu, Dang ; Quy, Pham Kim ; Hong, La Thi ; Van Vy, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8596270a0c17a571c3670491b58b75244ad755489eb80ff36839e4b67e498d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Equilibrium methods</topic><topic>Hilbert space</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Hieu, Dang</creatorcontrib><creatorcontrib>Quy, Pham Kim</creatorcontrib><creatorcontrib>Hong, La Thi</creatorcontrib><creatorcontrib>Van Vy, Le</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Hieu, Dang</au><au>Quy, Pham Kim</au><au>Hong, La Thi</au><au>Van Vy, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated hybrid methods for solving pseudomonotone equilibrium problems</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>46</volume><issue>4</issue><artnum>58</artnum><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method, and the shrinking projection method. The algorithms are designed to work either with or without the prior knowledge of the Lipschitz-type constants of bifunction. Theorems of strong convergence are established under mild conditions. The results in this paper generalize, extend, and improve some known results in the field. Finally, several of numerical experiments are performed to support the obtained theoretical results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-020-09778-y</doi><orcidid>https://orcid.org/0000-0002-5195-1637</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 2020-08, Vol.46 (4), Article 58 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_proquest_journals_2416326408 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Equilibrium methods Hilbert space Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Visualization |
title | Accelerated hybrid methods for solving pseudomonotone equilibrium problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20hybrid%20methods%20for%20solving%20pseudomonotone%20equilibrium%20problems&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Van%20Hieu,%20Dang&rft.date=2020-08-01&rft.volume=46&rft.issue=4&rft.artnum=58&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-020-09778-y&rft_dat=%3Cproquest_cross%3E2416326408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416326408&rft_id=info:pmid/&rfr_iscdi=true |