Accelerated hybrid methods for solving pseudomonotone equilibrium problems

In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2020-08, Vol.46 (4), Article 58
Hauptverfasser: Van Hieu, Dang, Quy, Pham Kim, Hong, La Thi, Van Vy, Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Advances in computational mathematics
container_volume 46
creator Van Hieu, Dang
Quy, Pham Kim
Hong, La Thi
Van Vy, Le
description In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method, and the shrinking projection method. The algorithms are designed to work either with or without the prior knowledge of the Lipschitz-type constants of bifunction. Theorems of strong convergence are established under mild conditions. The results in this paper generalize, extend, and improve some known results in the field. Finally, several of numerical experiments are performed to support the obtained theoretical results.
doi_str_mv 10.1007/s10444-020-09778-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2416326408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416326408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8596270a0c17a571c3670491b58b75244ad755489eb80ff36839e4b67e498d8d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZZD-PpahVCl70vORj0qYk2XY3EfLvXY3gzdMMzPO-Aw8htwzuGYB6CAw45xRSoGCU0nQ6IwsmVEpNPJzHHZihikl9Sa5COACAkUosyOuqLLFFnw9YJfup8E2VdDjsXRWS2vkkuPaz6XfJMeBYuc71bnA9Jngam7aJ9NglR--KFrtwTS7qvA148zuX5OPp8X29odu355f1akvLjJmBamFkqiCHkqlcKFZmUgE3rBC6UCLlPK-UEFwbLDTUdSZ1ZpAXUiE3utJVtiR3c298fBoxDPbgRt_HlzblTGap5KAjlc5U6V0IHmt79E2X-8kysN_O7OzMRmf2x5mdYiibQyHC_Q79X_U_qS_Re2-Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416326408</pqid></control><display><type>article</type><title>Accelerated hybrid methods for solving pseudomonotone equilibrium problems</title><source>Springer Nature - Complete Springer Journals</source><creator>Van Hieu, Dang ; Quy, Pham Kim ; Hong, La Thi ; Van Vy, Le</creator><creatorcontrib>Van Hieu, Dang ; Quy, Pham Kim ; Hong, La Thi ; Van Vy, Le</creatorcontrib><description>In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method, and the shrinking projection method. The algorithms are designed to work either with or without the prior knowledge of the Lipschitz-type constants of bifunction. Theorems of strong convergence are established under mild conditions. The results in this paper generalize, extend, and improve some known results in the field. Finally, several of numerical experiments are performed to support the obtained theoretical results.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-020-09778-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Equilibrium methods ; Hilbert space ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Visualization</subject><ispartof>Advances in computational mathematics, 2020-08, Vol.46 (4), Article 58</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8596270a0c17a571c3670491b58b75244ad755489eb80ff36839e4b67e498d8d3</citedby><cites>FETCH-LOGICAL-c319t-8596270a0c17a571c3670491b58b75244ad755489eb80ff36839e4b67e498d8d3</cites><orcidid>0000-0002-5195-1637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-020-09778-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-020-09778-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Van Hieu, Dang</creatorcontrib><creatorcontrib>Quy, Pham Kim</creatorcontrib><creatorcontrib>Hong, La Thi</creatorcontrib><creatorcontrib>Van Vy, Le</creatorcontrib><title>Accelerated hybrid methods for solving pseudomonotone equilibrium problems</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method, and the shrinking projection method. The algorithms are designed to work either with or without the prior knowledge of the Lipschitz-type constants of bifunction. Theorems of strong convergence are established under mild conditions. The results in this paper generalize, extend, and improve some known results in the field. Finally, several of numerical experiments are performed to support the obtained theoretical results.</description><subject>Algorithms</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Equilibrium methods</subject><subject>Hilbert space</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZZD-PpahVCl70vORj0qYk2XY3EfLvXY3gzdMMzPO-Aw8htwzuGYB6CAw45xRSoGCU0nQ6IwsmVEpNPJzHHZihikl9Sa5COACAkUosyOuqLLFFnw9YJfup8E2VdDjsXRWS2vkkuPaz6XfJMeBYuc71bnA9Jngam7aJ9NglR--KFrtwTS7qvA148zuX5OPp8X29odu355f1akvLjJmBamFkqiCHkqlcKFZmUgE3rBC6UCLlPK-UEFwbLDTUdSZ1ZpAXUiE3utJVtiR3c298fBoxDPbgRt_HlzblTGap5KAjlc5U6V0IHmt79E2X-8kysN_O7OzMRmf2x5mdYiibQyHC_Q79X_U_qS_Re2-Z</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Van Hieu, Dang</creator><creator>Quy, Pham Kim</creator><creator>Hong, La Thi</creator><creator>Van Vy, Le</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5195-1637</orcidid></search><sort><creationdate>20200801</creationdate><title>Accelerated hybrid methods for solving pseudomonotone equilibrium problems</title><author>Van Hieu, Dang ; Quy, Pham Kim ; Hong, La Thi ; Van Vy, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8596270a0c17a571c3670491b58b75244ad755489eb80ff36839e4b67e498d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Equilibrium methods</topic><topic>Hilbert space</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Hieu, Dang</creatorcontrib><creatorcontrib>Quy, Pham Kim</creatorcontrib><creatorcontrib>Hong, La Thi</creatorcontrib><creatorcontrib>Van Vy, Le</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Hieu, Dang</au><au>Quy, Pham Kim</au><au>Hong, La Thi</au><au>Van Vy, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated hybrid methods for solving pseudomonotone equilibrium problems</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>46</volume><issue>4</issue><artnum>58</artnum><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method, and the shrinking projection method. The algorithms are designed to work either with or without the prior knowledge of the Lipschitz-type constants of bifunction. Theorems of strong convergence are established under mild conditions. The results in this paper generalize, extend, and improve some known results in the field. Finally, several of numerical experiments are performed to support the obtained theoretical results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-020-09778-y</doi><orcidid>https://orcid.org/0000-0002-5195-1637</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2020-08, Vol.46 (4), Article 58
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_journals_2416326408
source Springer Nature - Complete Springer Journals
subjects Algorithms
Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Equilibrium methods
Hilbert space
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Visualization
title Accelerated hybrid methods for solving pseudomonotone equilibrium problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20hybrid%20methods%20for%20solving%20pseudomonotone%20equilibrium%20problems&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Van%20Hieu,%20Dang&rft.date=2020-08-01&rft.volume=46&rft.issue=4&rft.artnum=58&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-020-09778-y&rft_dat=%3Cproquest_cross%3E2416326408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416326408&rft_id=info:pmid/&rfr_iscdi=true