Accelerated hybrid methods for solving pseudomonotone equilibrium problems

In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2020-08, Vol.46 (4), Article 58
Hauptverfasser: Van Hieu, Dang, Quy, Pham Kim, Hong, La Thi, Van Vy, Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce some new accelerated hybrid algorithms for solving a pseudomonotone equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithms are constructed around the extragradient method, the inertial technique, the hybrid (or outer approximation) method, and the shrinking projection method. The algorithms are designed to work either with or without the prior knowledge of the Lipschitz-type constants of bifunction. Theorems of strong convergence are established under mild conditions. The results in this paper generalize, extend, and improve some known results in the field. Finally, several of numerical experiments are performed to support the obtained theoretical results.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-020-09778-y